These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23532048)

  • 1. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes.
    Blossfeld S; Schreiber CM; Liebsch G; Kuhn AJ; Hinsinger P
    Ann Bot; 2013 Jul; 112(2):267-76. PubMed ID: 23532048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.
    Wang X; Tang C; Severi J; Butterly CR; Baldock JA
    New Phytol; 2016 Aug; 211(3):864-73. PubMed ID: 27101777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.
    Lenzewski N; Mueller P; Meier RJ; Liebsch G; Jensen K; Koop-Jakobsen K
    New Phytol; 2018 Apr; 218(1):131-141. PubMed ID: 29314005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques.
    Faget M; Blossfeld S; von Gillhaussen P; Schurr U; Temperton VM
    Front Plant Sci; 2013; 4():392. PubMed ID: 24137168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizosphere pH gradient controls copper availability in a strongly acidic soil.
    Bravin MN; Tentscher P; Rose J; Hinsinger P
    Environ Sci Technol; 2009 Aug; 43(15):5686-91. PubMed ID: 19731663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O
    Koop-Jakobsen K; Mueller P; Meier RJ; Liebsch G; Jensen K
    Front Plant Sci; 2018; 9():541. PubMed ID: 29774037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply.
    Pang J; Bansal R; Zhao H; Bohuon E; Lambers H; Ryan MH; Ranathunge K; Siddique KHM
    New Phytol; 2018 Jul; 219(2):518-529. PubMed ID: 29756639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants.
    Blossfeld S; Gansert D
    Plant Cell Environ; 2007 Feb; 30(2):176-86. PubMed ID: 17238909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O
    Larsen M; Santner J; Oburger E; Wenzel WW; Glud RN
    Plant Soil; 2015; 390(1-2):279-292. PubMed ID: 26166902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of chickpea and faba bean to root-zone hypoxia, elevated ethylene, and carbon dioxide.
    Munir R; Konnerup D; Khan HA; Siddique KHM; Colmer TD
    Plant Cell Environ; 2019 Jan; 42(1):85-97. PubMed ID: 29486054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation.
    Israr D; Mustafa G; Khan KS; Shahzad M; Ahmad N; Masood S
    Plant Physiol Biochem; 2016 Nov; 108():304-312. PubMed ID: 27485620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizosphere carboxylate concentrations of chickpea are affected by soil bulk density.
    Wouterlood M; Lambers H; Veneklaas EJ
    Plant Biol (Stuttg); 2006 Mar; 8(2):198-203. PubMed ID: 16547864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of root uptake of
    Ota M; Tanaka T
    J Environ Radioact; 2019 May; 201():5-18. PubMed ID: 30721755
    [No Abstract]   [Full Text] [Related]  

  • 14. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions.
    Esfahani MN; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant Biotechnol J; 2014 Apr; 12(3):387-97. PubMed ID: 24267445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Responses of Arbuscular Mycorrhizal Fungal Communities to Long-Term Fertilization in the Wheat Rhizosphere and Root Endosphere.
    Ma Y; Zhang H; Wang D; Guo X; Yang T; Xiang X; Walder F; Chu H
    Appl Environ Microbiol; 2021 Aug; 87(17):e0034921. PubMed ID: 34160265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies.
    Ellouze W; Hamel C; Singh AK; Mishra V; DePauw RM; Knox RE
    Can J Microbiol; 2018 Aug; 64(8):527-536. PubMed ID: 29633625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional visualization and quantification of water content in the rhizosphere.
    Moradi AB; Carminati A; Vetterlein D; Vontobel P; Lehmann E; Weller U; Hopmans JW; Vogel HJ; Oswald SE
    New Phytol; 2011 Nov; 192(3):653-63. PubMed ID: 21824150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere.
    O'Neal L; Vo L; Alexandre G
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability.
    Devau N; Le Cadre E; Hinsinger P; Gérard F
    Ann Bot; 2010 Jun; 105(7):1183-97. PubMed ID: 20495198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated CO
    Gao K; Mao Z; Meng E; Li J; Liu X; Zhang Y; Zhang L; Wang G; Liu Y
    Environ Microbiol; 2022 Dec; 24(12):6252-6266. PubMed ID: 36229422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.