These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23532200)

  • 1. Addressing the competitive formation of tandem DNA lesions by a nucleobase peroxyl radical: a DFT-D screening.
    Dupont C; Patel C; Ravanat JL; Dumont E
    Org Biomol Chem; 2013 May; 11(18):3038-45. PubMed ID: 23532200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground- and excited-state properties of DNA base molecules from plane-wave calculations using ultrasoft pseudopotentials.
    Preuss M; Schmidt WG; Seino K; Furthmüller J; Bechstedt F
    J Comput Chem; 2004 Jan; 25(1):112-22. PubMed ID: 14634999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type-dependent identification of DNA nucleobases by using diamondoids.
    Maier FC; Fyta M
    Chemphyschem; 2014 Nov; 15(16):3466-75. PubMed ID: 25145625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT.
    Lin IC; Lilienfeld OA; Coutinho-Neto MD; Tavernelli I; Rothlisberger U
    J Phys Chem B; 2007 Dec; 111(51):14346-54. PubMed ID: 18052270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study.
    Futera Z; Klenko J; Sponer JE; Sponer J; Burda JV
    J Comput Chem; 2009 Sep; 30(12):1758-70. PubMed ID: 19090568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DFT study on the adsorption of nucleobases with Au
    Zhou S; Sun X; Jiang G
    J Mol Model; 2021 Jan; 27(2):29. PubMed ID: 33415409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5,6-Dihydropyrimidine peroxyl radical reactivity in DNA.
    San Pedro JM; Greenberg MM
    J Am Chem Soc; 2014 Mar; 136(10):3928-36. PubMed ID: 24579910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary lesions in DNA subunits: electron, hydrogen atom, proton, and hydride transfers.
    Duncan Lyngdoh RH; Schaefer HF
    Acc Chem Res; 2009 Apr; 42(4):563-72. PubMed ID: 19231845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases.
    Cooper VR; Thonhauser T; Langreth DC
    J Chem Phys; 2008 May; 128(20):204102. PubMed ID: 18513005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of DNA: damage to nucleobases.
    Kanvah S; Joseph J; Schuster GB; Barnett RN; Cleveland CL; Landman U
    Acc Chem Res; 2010 Feb; 43(2):280-7. PubMed ID: 19938827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals.
    Robert G; Wagner JR; Cadet J
    Free Radic Biol Med; 2023 Feb; 196():22-36. PubMed ID: 36603668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-linked thymine-purine base tandem lesions: synthesis, characterization, and measurement in gamma-irradiated isolated DNA.
    Bellon S; Ravanat JL; Gasparutto D; Cadet J
    Chem Res Toxicol; 2002 Apr; 15(4):598-606. PubMed ID: 11952347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thymine dimer photoreversal in purine-containing trinucleotides.
    Pan Z; Chen J; Schreier WJ; Kohler B; Lewis FD
    J Phys Chem B; 2012 Jan; 116(1):698-704. PubMed ID: 22103806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reactivity of the pyrimidine peroxyl radical towards the C-H bond in duplex DNA - a theoretical study.
    Wang SD; Zhang RB; Cadet J
    Org Biomol Chem; 2020 May; 18(18):3536-3543. PubMed ID: 32338268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence and electrochemical detection of pyrimidine/purine transversion by a ferrocenyl aminonaphthyridine derivative.
    Morita K; Sato Y; Seino T; Nishizawa S; Teramae N
    Org Biomol Chem; 2008 Jan; 6(2):266-8. PubMed ID: 18174994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and mechanism of formation of tandem lesions in DNA by a nucleobase peroxyl radical.
    Hong IS; Carter KN; Sato K; Greenberg MM
    J Am Chem Soc; 2007 Apr; 129(13):4089-98. PubMed ID: 17335214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formamide-based prebiotic synthesis of nucleobases: a kinetically accessible reaction route.
    Šponer JE; Mládek A; Šponer J; Fuentes-Cabrera M
    J Phys Chem A; 2012 Jan; 116(1):720-6. PubMed ID: 22129168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen abstraction from deoxyribose by a neighboring 3'-uracil peroxyl radical.
    Schyman P; Eriksson LA; Laaksonen A
    J Phys Chem B; 2009 May; 113(18):6574-8. PubMed ID: 19402732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-electron oxidation of individual DNA bases and DNA base stacks.
    Close DM
    J Phys Chem A; 2010 Feb; 114(4):1860-7. PubMed ID: 20050713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine.
    Douki T; Rivière J; Cadet J
    Chem Res Toxicol; 2002 Mar; 15(3):445-54. PubMed ID: 11896694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.