These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23532583)

  • 41. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs.
    Kraus JM; Schmidt TS; Walters DM; Wanty RB; Zuellig RE; Wolf RE
    Ecol Appl; 2014 Mar; 24(2):235-43. PubMed ID: 24689137
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tree leaf litter composition drives temporal variation in aquatic beetle colonization and assemblage structure in lentic systems.
    Pintar MR; Resetarits WJ
    Oecologia; 2017 Mar; 183(3):797-807. PubMed ID: 28074270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The distance that contaminated aquatic subsidies extend into lake riparian zones.
    Raikow DF; Walters DM; Fritz KM; Mills MA
    Ecol Appl; 2011 Apr; 21(3):983-90. PubMed ID: 21639060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Litter supply as a driver of microbial activity and community structure on decomposing leaves: a test in experimental streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Appl Environ Microbiol; 2013 Aug; 79(16):4965-73. PubMed ID: 23770903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Variation in metal concentrations across a large contamination gradient is reflected in stream but not linked riparian food webs.
    Kraus JM; Wanty RB; Schmidt TS; Walters DM; Wolf RE
    Sci Total Environ; 2021 May; 769():144714. PubMed ID: 33736264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web.
    Jabiol J; Cornut J; Danger M; Jouffroy M; Elger A; Chauvet E
    Oecologia; 2014 Sep; 176(1):225-35. PubMed ID: 24938833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leaf litter quality drives the feeding by invertebrate shredders in tropical streams.
    Sena G; Francisco Gonçalves Júnior J; Tavares Martins R; Hamada N; de Souza Rezende R
    Ecol Evol; 2020 Aug; 10(16):8563-8570. PubMed ID: 32884640
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers.
    Chaves-Ulloa R; Taylor BW; Broadley HJ; Cottingham KL; Baer NA; Weathers KC; Ewing HA; Chen CY
    Ecol Appl; 2016 Sep; 26(6):1771-1784. PubMed ID: 27755696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cross-ecosystem bottlenecks alter reciprocal subsidies within meta-ecosystems.
    Klemmer AJ; Galatowitsch ML; McIntosh AR
    Proc Biol Sci; 2020 Jun; 287(1929):20200550. PubMed ID: 32546092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream.
    Rincón J; Covich A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():143-54. PubMed ID: 25189075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MITOCHONDRIAL INHERITANCE PATTERNS ACROSS A COTTONWOOD HYBRID ZONE: CYTONUCLEAR DISEQUILIBRIA AND HYBRID ZONE DYNAMICS.
    Paige KN; Capman WC; Jennetten P
    Evolution; 1991 Sep; 45(6):1360-1369. PubMed ID: 28563817
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference.
    Wright MS; Covich AP
    Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aquatic predation alters a terrestrial prey subsidy.
    Wesner JS
    Ecology; 2010 May; 91(5):1435-44. PubMed ID: 20503875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intraspecific leaf chemistry drives locally accelerated ecosystem function in aquatic and terrestrial communities.
    Jackrel SL; Morton TC; Wootton JT
    Ecology; 2016 Aug; 97(8):2125-2135. PubMed ID: 27859211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export.
    Earl JE; Castello PO; Cohagen KE; Semlitsch RD
    Oecologia; 2014 May; 175(1):209-18. PubMed ID: 24399483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How do riparian woody seedlings survive seasonal drought?
    Stella JC; Battles JJ
    Oecologia; 2010 Nov; 164(3):579-90. PubMed ID: 20480183
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape.
    Raitif J; Plantegenest M; Agator O; Piscart C; Roussel JM
    Sci Total Environ; 2018 Dec; 644():594-601. PubMed ID: 29990909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape.
    Vasconcelos HL; Laurance WF
    Oecologia; 2005 Jul; 144(3):456-62. PubMed ID: 15942762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colonisation of leaf litter by aquatic invertebrates in an Atlantic Forest stream.
    Oliveira VC; Gonçalves EA; Alves RG
    Braz J Biol; 2014 May; 74(2):267-73. PubMed ID: 25166310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects.
    Martin-Creuzburg D; Kowarik C; Straile D
    Sci Total Environ; 2017 Jan; 577():174-182. PubMed ID: 27810302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.