BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23532725)

  • 1. Design of peptide affinity ligands for S-protein: a comparison of combinatorial and de novo design strategies.
    Chandra D; Morrison CJ; Woo J; Cramer S; Karande P
    Mol Divers; 2013 May; 17(2):357-69. PubMed ID: 23532725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and screening of a rationally designed combinatorial library of affinity ligands mimicking protein L from Peptostreptococcus magnus.
    Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2005; 18(3):213-24. PubMed ID: 15688433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity chromatography matures as bioinformatic and combinatorial tools develop.
    Clonis YD
    J Chromatogr A; 2006 Jan; 1101(1-2):1-24. PubMed ID: 16242704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of novel tumor imaging agents with phage-display combinatorial peptide libraries.
    Campa MJ; Serlin SB; Patz EF
    Acad Radiol; 2002 Aug; 9(8):927-32. PubMed ID: 12186442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex.
    Chandra D; Sankalia N; Arcibal I; Banta S; Cropek D; Karande P
    Biopolymers; 2014 Jan; 102(1):97-106. PubMed ID: 24436041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides.
    Wiedemann U; Boisguerin P; Leben R; Leitner D; Krause G; Moelling K; Volkmer-Engert R; Oschkinat H
    J Mol Biol; 2004 Oct; 343(3):703-18. PubMed ID: 15465056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors.
    Gruber CW; Muttenthaler M; Freissmuth M
    Curr Pharm Des; 2010; 16(28):3071-88. PubMed ID: 20687879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of model peptides as affinity ligands for the purification of humanized monoclonal antibodies by means of phage display.
    Ehrlich GK; Bailon P
    J Biochem Biophys Methods; 2001 Oct; 49(1-3):443-54. PubMed ID: 11694293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-bead screening of combinatorial libraries: reduction of nonspecific binding by decreasing surface ligand density.
    Chen X; Tan PH; Zhang Y; Pei D
    J Comb Chem; 2009; 11(4):604-11. PubMed ID: 19397369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity for the cognate monoclonal antibody of synthetic peptides derived from selection by phage display. Role of sequences flanking thebinding motif.
    Ferrières G; Villard S; Pugnière M; Mani JC; Navarro-Teulon I; Rharbaoui F; Laune D; Loret E; Pau B; Granier C
    Eur J Biochem; 2000 Mar; 267(6):1819-29. PubMed ID: 10712615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis and characterisation of affinity ligands for glycoproteins.
    Palanisamy UD; Hussain A; Iqbal S; Sproule K; Lowe CR
    J Mol Recognit; 1999; 12(1):57-66. PubMed ID: 10398397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From consensus sequence peptide to high affinity ligand, a "library scan" strategy.
    Yeh RH; Lee TR; Lawrence DS
    J Biol Chem; 2001 Apr; 276(15):12235-40. PubMed ID: 11278862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The affinity concept in bioseparation: evolving paradigms and expanding range of applications.
    Mondal K; Gupta MN
    Biomol Eng; 2006 Jun; 23(2-3):59-76. PubMed ID: 16527537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial approaches: a new tool to search for highly structured beta-hairpin peptides.
    Pastor MT; López de la Paz M; Lacroix E; Serrano L; Pérez-Payá E
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):614-9. PubMed ID: 11782528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic affinity ligands as a novel tool to improve protein stability.
    Sousa IT; Ruiu L; Lowe CR; Taipa MA
    J Mol Recognit; 2009; 22(2):83-90. PubMed ID: 18654989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction analysis through proteomic phage display.
    Sundell GN; Ivarsson Y
    Biomed Res Int; 2014; 2014():176172. PubMed ID: 25295249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive peptides from libraries.
    Falciani C; Lozzi L; Pini A; Bracci L
    Chem Biol; 2005 Apr; 12(4):417-26. PubMed ID: 15850978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Prediction of Molecular Recognition in a Combinatorial Chemical Space Using Machine Learning.
    Taguchi AT; Boyd J; Diehnelt CW; Legutki JB; Zhao ZG; Woodbury NW
    ACS Comb Sci; 2020 Oct; 22(10):500-508. PubMed ID: 32786325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage-displayed combinatorial peptide libraries in fusion to beta-lactamase as reporter for an accelerated clone screening: Potential uses of selected enzyme-linked affinity reagents in downstream applications.
    Shukla GS; Krag DN
    Comb Chem High Throughput Screen; 2010 Jan; 13(1):75-87. PubMed ID: 20214576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities.
    Giebel LB; Cass RT; Milligan DL; Young DC; Arze R; Johnson CR
    Biochemistry; 1995 Nov; 34(47):15430-5. PubMed ID: 7492543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.