These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23532770)

  • 1. Expression screening of cancer/testis genes in prostate cancer identifies NR6A1 as a novel marker of disease progression and aggressiveness.
    Mathieu R; Evrard B; Fromont G; Rioux-Leclercq N; Godet J; Cathelineau X; Guillé F; Primig M; Chalmel F
    Prostate; 2013 Jul; 73(10):1103-14. PubMed ID: 23532770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression patterns of candidate susceptibility genes HNF1β and CtBP2 in prostate cancer: association with tumor progression.
    Debiais-Delpech C; Godet J; Pedretti N; Bernard FX; Irani J; Cathelineau X; Cussenot O; Fromont G
    Urol Oncol; 2014 May; 32(4):426-32. PubMed ID: 24332637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IgG gene expression and its possible significance in prostate cancers.
    Liu Y; Chen Z; Niu N; Chang Q; Deng R; Korteweg C; Gu J
    Prostate; 2012 May; 72(6):690-701. PubMed ID: 22430367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortactin is associated with tumour progression and poor prognosis in prostate cancer and SIRT2 other than HADC6 may work as facilitator in situ.
    Hou H; Chen W; Zhao L; Zuo Q; Zhang G; Zhang X; Wang H; Gong H; Li X; Wang M; Wang Y; Li X
    J Clin Pathol; 2012 Dec; 65(12):1088-96. PubMed ID: 22944623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 12-gene expression signature is associated with aggressive histological in prostate cancer: SEC14L1 and TCEB1 genes are potential markers of progression.
    Agell L; Hernández S; Nonell L; Lorenzo M; Puigdecanet E; de Muga S; Juanpere N; Bermudo R; Fernández PL; Lorente JA; Serrano S; Lloreta J
    Am J Pathol; 2012 Nov; 181(5):1585-94. PubMed ID: 23083832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Y-box binding protein-1 promotes castration-resistant prostate cancer growth via androgen receptor expression.
    Shiota M; Takeuchi A; Song Y; Yokomizo A; Kashiwagi E; Uchiumi T; Kuroiwa K; Tatsugami K; Fujimoto N; Oda Y; Naito S
    Endocr Relat Cancer; 2011 Aug; 18(4):505-17. PubMed ID: 21652770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and androgen receptor signaling in the development and progression of castration-resistant prostate cancer.
    Shiota M; Yokomizo A; Naito S
    Free Radic Biol Med; 2011 Oct; 51(7):1320-8. PubMed ID: 21820046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The search for secreted proteins in prostate cancer by the Escherichia coli ampicillin secretion trap: expression of NBL1 is highly restricted to the prostate and is related to cancer progression.
    Hayashi T; Sentani K; Oue N; Ohara S; Teishima J; Anami K; Sakamoto N; Matsubara A; Yasui W
    Pathobiology; 2013; 80(2):60-9. PubMed ID: 22948749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer.
    Gerhardt J; Montani M; Wild P; Beer M; Huber F; Hermanns T; Müntener M; Kristiansen G
    Am J Pathol; 2012 Feb; 180(2):848-61. PubMed ID: 22138582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HER2 expression and gene amplification in pT2a Gleason score 6 prostate cancer incidentally detected in cystoprostatectomies: comparison with clinically detected androgen-dependent and androgen-independent cancer.
    Montironi R; Mazzucchelli R; Barbisan F; Stramazzotti D; Santinelli A; Scarpelli M; Lòpez Beltran A
    Hum Pathol; 2006 Sep; 37(9):1137-44. PubMed ID: 16938518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCR2 expression correlates with prostate cancer progression.
    Lu Y; Cai Z; Xiao G; Liu Y; Keller ET; Yao Z; Zhang J
    J Cell Biochem; 2007 Jun; 101(3):676-85. PubMed ID: 17216598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer.
    Roudier MP; Winters BR; Coleman I; Lam HM; Zhang X; Coleman R; Chéry L; True LD; Higano CS; Montgomery B; Lange PH; Snyder LA; Srivastava S; Corey E; Vessella RL; Nelson PS; Üren A; Morrissey C
    Prostate; 2016 Jun; 76(9):810-22. PubMed ID: 26990456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical expression of prostate tumor overexpressed 1 in cystoprostatectomies with incidental and insignificant prostate cancer. Further evidence for field effect in prostatic carcinogenesis.
    Mazzucchelli R; Barbisan F; Santinelli A; Lopez-Beltran A; Cheng L; Scarpelli M; Montironi R
    Hum Pathol; 2011 Dec; 42(12):1931-6. PubMed ID: 21676431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy.
    Rabien A; Burkhardt M; Jung M; Fritzsche F; Ringsdorf M; Schicktanz H; Loening SA; Kristiansen G; Jung K
    Eur Urol; 2007 May; 51(5):1259-66. PubMed ID: 16806661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines.
    Trojan L; Schaaf A; Steidler A; Haak M; Thalmann G; Knoll T; Gretz N; Alken P; Michel MS
    Anticancer Res; 2005; 25(1A):183-91. PubMed ID: 15816537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human heterochromatin protein 1 isoform HP1beta enhances androgen receptor activity and is implicated in prostate cancer growth.
    Shiota M; Song Y; Yokomizo A; Tada Y; Kuroiwa K; Eto M; Oda Y; Inokuchi J; Uchiumi T; Fujimoto N; Seki N; Naito S
    Endocr Relat Cancer; 2010 Jun; 17(2):455-67. PubMed ID: 20308360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer.
    Goodman OB; Symanowski JT; Loudyi A; Fink LM; Ward DC; Vogelzang NJ
    Clin Genitourin Cancer; 2011 Sep; 9(1):31-8. PubMed ID: 21705286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased plasma caveolin-1 levels are associated with progression of prostate cancer among Japanese men.
    Sugie S; Mukai S; Tsukino H; Toda Y; Yamauchi T; Nishikata I; Kuroda Y; Morishita K; Kamoto T
    Anticancer Res; 2013 May; 33(5):1893-7. PubMed ID: 23645736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model.
    Terada N; Shimizu Y; Kamba T; Inoue T; Maeno A; Kobayashi T; Nakamura E; Kamoto T; Kanaji T; Maruyama T; Mikami Y; Toda Y; Matsuoka T; Okuno Y; Tsujimoto G; Narumiya S; Ogawa O
    Cancer Res; 2010 Feb; 70(4):1606-15. PubMed ID: 20145136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MT1G hypermethylation is associated with higher tumor stage in prostate cancer.
    Henrique R; Jerónimo C; Hoque MO; Nomoto S; Carvalho AL; Costa VL; Oliveira J; Teixeira MR; Lopes C; Sidransky D
    Cancer Epidemiol Biomarkers Prev; 2005 May; 14(5):1274-8. PubMed ID: 15894685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.