These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 23532843)
1. The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. Nakamura A; Tsukada T; Auer S; Furuta T; Wada M; Koivula A; Igarashi K; Samejima M J Biol Chem; 2013 May; 288(19):13503-10. PubMed ID: 23532843 [TBL] [Abstract][Full Text] [Related]
2. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. Igarashi K; Koivula A; Wada M; Kimura S; Penttilä M; Samejima M J Biol Chem; 2009 Dec; 284(52):36186-36190. PubMed ID: 19858200 [TBL] [Abstract][Full Text] [Related]
4. Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase. Silveira RL; Skaf MS Phys Chem Chem Phys; 2018 Mar; 20(11):7498-7507. PubMed ID: 29488531 [TBL] [Abstract][Full Text] [Related]
5. Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from Nakamura A; Kanazawa T; Furuta T; Sakurai M; Saloheimo M; Samejima M; Koivula A; Igarashi K J Appl Glycosci (1999); 2021; 68(1):19-29. PubMed ID: 34354542 [TBL] [Abstract][Full Text] [Related]
6. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A. Kont R; Kari J; Borch K; Westh P; Väljamäe P J Biol Chem; 2016 Dec; 291(50):26013-26023. PubMed ID: 27780868 [TBL] [Abstract][Full Text] [Related]
7. Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Schiano-di-Cola C; Røjel N; Jensen K; Kari J; Sørensen TH; Borch K; Westh P J Biol Chem; 2019 Feb; 294(6):1807-1815. PubMed ID: 30538133 [TBL] [Abstract][Full Text] [Related]
8. Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. Taylor CB; Payne CM; Himmel ME; Crowley MF; McCabe C; Beckham GT J Phys Chem B; 2013 May; 117(17):4924-33. PubMed ID: 23534900 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. Kari J; Olsen J; Borch K; Cruys-Bagger N; Jensen K; Westh P J Biol Chem; 2014 Nov; 289(47):32459-68. PubMed ID: 25271162 [TBL] [Abstract][Full Text] [Related]
10. Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. Shibafuji Y; Nakamura A; Uchihashi T; Sugimoto N; Fukuda S; Watanabe H; Samejima M; Ando T; Noji H; Koivula A; Igarashi K; Iino R J Biol Chem; 2014 May; 289(20):14056-65. PubMed ID: 24692563 [TBL] [Abstract][Full Text] [Related]
11. Molecular Dynamics Simulations of Family 7 Cellobiohydrolase Mutants Aimed at Reducing Product Inhibition. Silveira RL; Skaf MS J Phys Chem B; 2015 Jul; 119(29):9295-303. PubMed ID: 25436435 [TBL] [Abstract][Full Text] [Related]
12. The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain. Hall M; Rubin J; Behrens SH; Bommarius AS J Biotechnol; 2011 Oct; 155(4):370-6. PubMed ID: 21807036 [TBL] [Abstract][Full Text] [Related]
13. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. von Ossowski I; Ståhlberg J; Koivula A; Piens K; Becker D; Boer H; Harle R; Harris M; Divne C; Mahdi S; Zhao Y; Driguez H; Claeyssens M; Sinnott ML; Teeri TT J Mol Biol; 2003 Oct; 333(4):817-29. PubMed ID: 14568538 [TBL] [Abstract][Full Text] [Related]
14. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei. Christensen SJ; Kari J; Badino SF; Borch K; Westh P FEBS J; 2018 Dec; 285(23):4482-4493. PubMed ID: 30281909 [TBL] [Abstract][Full Text] [Related]
15. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose. Nakamura A; Tasaki T; Ishiwata D; Yamamoto M; Okuni Y; Visootsat A; Maximilien M; Noji H; Uchiyama T; Samejima M; Igarashi K; Iino R J Biol Chem; 2016 Oct; 291(43):22404-22413. PubMed ID: 27609516 [TBL] [Abstract][Full Text] [Related]
16. Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study. Mulakala C; Reilly PJ Proteins; 2005 Sep; 60(4):598-605. PubMed ID: 16001418 [TBL] [Abstract][Full Text] [Related]
17. The impact of Trichoderma reesei Cel7A carbohydrate binding domain mutations on its binding to a cellulose surface: a molecular dynamics free energy study. Li T; Yan S; Yao L J Mol Model; 2012 Apr; 18(4):1355-64. PubMed ID: 21761177 [TBL] [Abstract][Full Text] [Related]
18. Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity. Textor LC; Colussi F; Silveira RL; Serpa V; de Mello BL; Muniz JR; Squina FM; Pereira N; Skaf MS; Polikarpov I FEBS J; 2013 Jan; 280(1):56-69. PubMed ID: 23114223 [TBL] [Abstract][Full Text] [Related]
19. Binding Process and Free Energy Characteristics of Cellulose Chain into the Catalytic Domain of Cellobiohydrolase Yang Y; Liu Y; Ning L; Wang L; Mu Y; Li W J Phys Chem B; 2019 Oct; 123(42):8853-8860. PubMed ID: 31557037 [TBL] [Abstract][Full Text] [Related]
20. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Kipper K; Väljamäe P; Johansson G Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]