These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23532971)

  • 1. Hydrogen production by dehydrogenation of formic acid on atomically dispersed gold on ceria.
    Yi N; Saltsburg H; Flytzani-Stephanopoulos M
    ChemSusChem; 2013 May; 6(5):816-9. PubMed ID: 23532971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Zhang YF; Ping Y; Wang HL; Jiang Q
    Nanoscale; 2014 Mar; 6(6):3073-7. PubMed ID: 24526095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation.
    Wang ZL; Wang HL; Yan JM; Ping Y; O SI; Li SJ; Jiang Q
    Chem Commun (Camb); 2014 Mar; 50(21):2732-4. PubMed ID: 24473636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage in formic acid amine adducts.
    Boddien A; Gartner F; Mellmann D; Sponholz P; Junge H; Laurenczy G; Beller M
    Chimia (Aarau); 2011; 65(4):214-8. PubMed ID: 21678764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox properties of doped and supported copper-ceria catalysts.
    Beckers J; Rothenberg G
    Dalton Trans; 2008 Dec; (46):6573-8. PubMed ID: 19030619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen from formic acid through its selective disproportionation over sodium germanate--a non-transition-metal catalysis system.
    Amos RI; Heinroth F; Chan B; Zheng S; Haynes BS; Easton CJ; Masters AF; Radom L; Maschmeyer T
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11275-9. PubMed ID: 25169798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature.
    Zhou X; Huang Y; Liu C; Liao J; Lu T; Xing W
    ChemSusChem; 2010 Dec; 3(12):1379-82. PubMed ID: 21064176
    [No Abstract]   [Full Text] [Related]  

  • 8. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Ping Y; Wang HL; Zheng WT; Jiang Q
    Angew Chem Int Ed Engl; 2013 Apr; 52(16):4406-9. PubMed ID: 23512790
    [No Abstract]   [Full Text] [Related]  

  • 10. Towards a practical setup for hydrogen production from formic acid.
    Sponholz P; Mellmann D; Junge H; Beller M
    ChemSusChem; 2013 Jul; 6(7):1172-6. PubMed ID: 23757329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.
    Metin Ö; Sun X; Sun S
    Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic Approaches for Hydrogen Production via Formic Acid Decomposition.
    Navlani-García M; Salinas-Torres D; Mori K; Kuwahara Y; Yamashita H
    Top Curr Chem (Cham); 2019 Sep; 377(5):27. PubMed ID: 31559502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium.
    Bulushev DA; Jia L; Beloshapkin S; Ross JR
    Chem Commun (Camb); 2012 May; 48(35):4184-6. PubMed ID: 22447125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids.
    Li X; Ma X; Shi F; Deng Y
    ChemSusChem; 2010; 3(1):71-4. PubMed ID: 20033982
    [No Abstract]   [Full Text] [Related]  

  • 15. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine.
    Honda M; Tamura M; Nakagawa Y; Sonehara S; Suzuki K; Fujimoto K; Tomishige K
    ChemSusChem; 2013 Aug; 6(8):1341-4. PubMed ID: 23801598
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel gold-catalyzed chemoselective reduction of alpha,beta-unsaturated aldehydes using CO and H2O as the hydrogen source.
    He L; Yu FJ; Lou XB; Cao Y; He HY; Fan KN
    Chem Commun (Camb); 2010 Mar; 46(9):1553-5. PubMed ID: 20162179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ruthenium-based biomimetic hydrogen cluster for efficient photocatalytic hydrogen generation from formic acid.
    Chang CH; Chen MH; Du WS; Gliniak J; Lin JH; Wu HH; Chan HF; Yu JS; Wu TK
    Chemistry; 2015 Apr; 21(17):6617-22. PubMed ID: 25766997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically dispersed supported metal catalysts.
    Flytzani-Stephanopoulos M; Gates BC
    Annu Rev Chem Biomol Eng; 2012; 3():545-74. PubMed ID: 22559871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst.
    Fellay C; Dyson PJ; Laurenczy G
    Angew Chem Int Ed Engl; 2008; 47(21):3966-8. PubMed ID: 18393267
    [No Abstract]   [Full Text] [Related]  

  • 20. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst.
    Preti D; Resta C; Squarcialupi S; Fachinetti G
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12551-4. PubMed ID: 22057843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.