These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23533014)

  • 1. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells.
    Valdes-Sánchez T; Rodriguez-Jimenez FJ; García-Cruz DM; Escobar-Ivirico JL; Alastrue-Agudo A; Erceg S; Monleón M; Moreno-Manzano V
    J Tissue Eng Regen Med; 2015 Jun; 9(6):734-9. PubMed ID: 23533014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent.
    Terraf P; Kouhsari SM; Ai J; Babaloo H
    Mol Neurobiol; 2017 Sep; 54(7):5657-5667. PubMed ID: 27624387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction.
    Rodríguez-Jimnez FJ; Alastrue-Agudo A; Erceg S; Stojkovic M; Moreno-Manzano V
    Stem Cells; 2012 Oct; 30(10):2221-33. PubMed ID: 22865656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury.
    Alastrue-Agudo A; Rodriguez-Jimenez FJ; Mocholi EL; De Giorgio F; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29315225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice.
    Marcuzzo S; Isaia D; Bonanno S; Malacarne C; Cavalcante P; Zacheo A; Laquintana V; Denora N; Sanavio B; Salvati E; Andreozzi P; Stellacci F; Krol S; Mellado-López M; Mantegazza R; Moreno-Manzano V; Bernasconi P
    Cells; 2019 Mar; 8(3):. PubMed ID: 30909571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.
    Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E
    Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair.
    Hwang DH; Kim HM; Kang YM; Joo IS; Cho CS; Yoon BW; Kim SU; Kim BG
    Cell Transplant; 2011; 20(9):1361-79. PubMed ID: 21396156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium Oxide/Poly(l-lactide-co-ε-caprolactone) Scaffolds Loaded with Neural Morphogens Promote Spinal Cord Repair through Targeting the Calcium Influx and Neuronal Differentiation of Neural Stem Cells.
    Xie J; Li J; Ma J; Li M; Wang X; Fu X; Ma Y; Yang H; Li B; Saijilafu
    Adv Healthc Mater; 2022 Aug; 11(15):e2200386. PubMed ID: 35587044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury.
    Gómez-Villafuertes R; Rodríguez-Jiménez FJ; Alastrue-Agudo A; Stojkovic M; Miras-Portugal MT; Moreno-Manzano V
    Cell Transplant; 2015; 24(8):1493-509. PubMed ID: 25198194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair.
    Li X; Xiao Z; Han J; Chen L; Xiao H; Ma F; Hou X; Li X; Sun J; Ding W; Zhao Y; Chen B; Dai J
    Biomaterials; 2013 Jul; 34(21):5107-16. PubMed ID: 23591390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells.
    Wang J; Zheng J; Zheng Q; Wu Y; Wu B; Huang S; Fang W; Guo X
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():140-7. PubMed ID: 25491970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohybrids for spinal cord injury repair.
    Martínez-Ramos C; Doblado LR; Mocholi EL; Alastrue-Agudo A; Petidier MS; Giraldo E; Pradas MM; Moreno-Manzano V
    J Tissue Eng Regen Med; 2019 Mar; 13(3):509-521. PubMed ID: 30726582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.
    Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH
    J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells.
    Rodriguez-Jimenez FJ; Alastrue A; Stojkovic M; Erceg S; Moreno-Manzano V
    Cell Tissue Res; 2016 Aug; 365(2):295-307. PubMed ID: 27221278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells.
    Marcuzzo S; Kapetis D; Mantegazza R; Baggi F; Bonanno S; Barzago C; Cavalcante P; Kerlero de Rosbo N; Bernasconi P
    Exp Neurol; 2014 Mar; 253():91-101. PubMed ID: 24365539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery.
    Requejo-Aguilar R; Alastrue-Agudo A; Cases-Villar M; Lopez-Mocholi E; England R; Vicent MJ; Moreno-Manzano V
    Biomaterials; 2017 Jan; 113():18-30. PubMed ID: 27810639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.