These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. Marcuzzo S; Isaia D; Bonanno S; Malacarne C; Cavalcante P; Zacheo A; Laquintana V; Denora N; Sanavio B; Salvati E; Andreozzi P; Stellacci F; Krol S; Mellado-López M; Mantegazza R; Moreno-Manzano V; Bernasconi P Cells; 2019 Mar; 8(3):. PubMed ID: 30909571 [TBL] [Abstract][Full Text] [Related]
7. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels. Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454 [TBL] [Abstract][Full Text] [Related]
8. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair. Hwang DH; Kim HM; Kang YM; Joo IS; Cho CS; Yoon BW; Kim SU; Kim BG Cell Transplant; 2011; 20(9):1361-79. PubMed ID: 21396156 [TBL] [Abstract][Full Text] [Related]
9. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury. Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588 [TBL] [Abstract][Full Text] [Related]
10. Magnesium Oxide/Poly(l-lactide-co-ε-caprolactone) Scaffolds Loaded with Neural Morphogens Promote Spinal Cord Repair through Targeting the Calcium Influx and Neuronal Differentiation of Neural Stem Cells. Xie J; Li J; Ma J; Li M; Wang X; Fu X; Ma Y; Yang H; Li B; Saijilafu Adv Healthc Mater; 2022 Aug; 11(15):e2200386. PubMed ID: 35587044 [TBL] [Abstract][Full Text] [Related]
11. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury. Gómez-Villafuertes R; Rodríguez-Jiménez FJ; Alastrue-Agudo A; Stojkovic M; Miras-Portugal MT; Moreno-Manzano V Cell Transplant; 2015; 24(8):1493-509. PubMed ID: 25198194 [TBL] [Abstract][Full Text] [Related]
12. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
13. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Li X; Xiao Z; Han J; Chen L; Xiao H; Ma F; Hou X; Li X; Sun J; Ding W; Zhao Y; Chen B; Dai J Biomaterials; 2013 Jul; 34(21):5107-16. PubMed ID: 23591390 [TBL] [Abstract][Full Text] [Related]
14. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells. Wang J; Zheng J; Zheng Q; Wu Y; Wu B; Huang S; Fang W; Guo X Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():140-7. PubMed ID: 25491970 [TBL] [Abstract][Full Text] [Related]
16. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978 [TBL] [Abstract][Full Text] [Related]
17. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511 [TBL] [Abstract][Full Text] [Related]