These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23533024)
1. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Martin S; Cohu S; Vignot C; Zimmerman G; Gattuso JP Ecol Evol; 2013 Mar; 3(3):676-93. PubMed ID: 23533024 [TBL] [Abstract][Full Text] [Related]
2. Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Noisette F; Duong G; Six C; Davoult D; Martin S J Phycol; 2013 Aug; 49(4):746-57. PubMed ID: 27007207 [TBL] [Abstract][Full Text] [Related]
3. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related]
4. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Qui-Minet ZN; Coudret J; Davoult D; Grall J; Mendez-Sandin M; Cariou T; Martin S Ecol Evol; 2019 Dec; 9(24):13787-13807. PubMed ID: 31938482 [TBL] [Abstract][Full Text] [Related]
5. Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events. Rendina F; Bouchet PJ; Appolloni L; Russo GF; Sandulli R; Kolzenburg R; Putra A; Ragazzola F Mar Environ Res; 2019 Sep; 150():104764. PubMed ID: 31376632 [TBL] [Abstract][Full Text] [Related]
6. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106 [TBL] [Abstract][Full Text] [Related]
7. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga. Johnson MD; Carpenter RC Biol Lett; 2018 Jul; 14(7):. PubMed ID: 29997188 [TBL] [Abstract][Full Text] [Related]
9. Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. Maier C; Popp P; Sollfrank N; Weinbauer MG; Wild C; Gattuso JP J Exp Biol; 2016 Oct; 219(Pt 20):3208-3217. PubMed ID: 27471280 [TBL] [Abstract][Full Text] [Related]
10. Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Uthicke S; Fabricius KE Glob Chang Biol; 2012 Sep; 18(9):2781-91. PubMed ID: 24501056 [TBL] [Abstract][Full Text] [Related]
12. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
13. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Vásquez-Elizondo RM; Enríquez S Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396 [TBL] [Abstract][Full Text] [Related]
14. Temperature amplifies the effect of high CO Sordo L; Santos R; Barrote I; Silva J Ecol Evol; 2019 Oct; 9(19):11000-11009. PubMed ID: 31641450 [TBL] [Abstract][Full Text] [Related]
15. Physiology of maerl algae: Comparison of inter- and intraspecies variations. Qui-Minet ZN; Davoult D; Grall J; Delaunay C; Six C; Cariou T; Martin S J Phycol; 2021 Jun; 57(3):831-848. PubMed ID: 33316844 [TBL] [Abstract][Full Text] [Related]
16. Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Kato A; Hikami M; Kumagai NH; Suzuki A; Nojiri Y; Sakai K Mar Environ Res; 2014 Mar; 94():1-6. PubMed ID: 24239067 [TBL] [Abstract][Full Text] [Related]
17. Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO Celis-Plá PSM; Martínez B; Korbee N; Hall-Spencer JM; Figueroa FL Mar Environ Res; 2017 Sep; 130():157-165. PubMed ID: 28764959 [TBL] [Abstract][Full Text] [Related]
18. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Thomsen J; Casties I; Pansch C; Körtzinger A; Melzner F Glob Chang Biol; 2013 Apr; 19(4):1017-27. PubMed ID: 23504880 [TBL] [Abstract][Full Text] [Related]
19. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
20. Conspecific aggregations mitigate the effects of ocean acidification on calcification of the coral Evensen NR; Edmunds PJ J Exp Biol; 2017 Mar; 220(Pt 6):1097-1105. PubMed ID: 28087656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]