These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 23533331)

  • 1. Mechanisms of metal resistance and homeostasis in haloarchaea.
    Srivastava P; Kowshik M
    Archaea; 2013; 2013():732864. PubMed ID: 23533331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2.
    Mei Y; Liu H; Zhang S; Yang M; Hu C; Zhang J; Shen P; Chen X
    PLoS One; 2017; 12(9):e0184974. PubMed ID: 28926633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea.
    Williams TJ; Allen MA; DeMaere MZ; Kyrpides NC; Tringe SG; Woyke T; Cavicchioli R
    ISME J; 2014 Aug; 8(8):1645-58. PubMed ID: 24553470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halocins: are they involved in the competition between halobacteria in saltern ponds?
    Kis-Papo T; Oren A
    Extremophiles; 2000 Feb; 4(1):35-41. PubMed ID: 10741835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review.
    Bryan GW; Langston WJ
    Environ Pollut; 1992; 76(2):89-131. PubMed ID: 15091993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia.
    Haferburg G; Gröning JAD; Schmidt N; Kummer NA; Erquicia JC; Schlömann M
    Microbiol Res; 2017 Jun; 199():19-28. PubMed ID: 28454706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic heavy metal/oxyanion tolerance in haloarchaea from some saline and hypersaline ecosystems.
    Tavoosi N; Akhavan Sepahi A; Amoozegar MA; Kiarostami V
    J Basic Microbiol; 2023 May; 63(5):558-569. PubMed ID: 36892092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.
    Ivanina AV; Beniash E; Etzkorn M; Meyers TB; Ringwood AH; Sokolova IM
    Aquat Toxicol; 2013 Sep; 140-141():123-33. PubMed ID: 23796537
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Sorokin DY; Yakimov M; Messina E; Merkel AY; Bale NJ; Sinninghe Damsté JS
    Int J Syst Evol Microbiol; 2019 Sep; 69(9):2662-2673. PubMed ID: 31166158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats.
    Sorokin DY; Messina E; Smedile F; Roman P; Damsté JSS; Ciordia S; Mena MC; Ferrer M; Golyshin PN; Kublanov IV; Samarov NI; Toshchakov SV; La Cono V; Yakimov MM
    ISME J; 2017 May; 11(5):1245-1260. PubMed ID: 28106880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic analysis of facultatively oligotrophic haloarchaea of the genera Halarchaeum, Halorubrum, and Halolamina, isolated from solar salt.
    Lee C; Song HS; Lee SH; Kim JY; Rhee JK; Roh SW
    Arch Microbiol; 2021 Jan; 203(1):261-268. PubMed ID: 32918097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective enrichment on a wide polysaccharide spectrum allowed isolation of novel metabolic and taxonomic groups of haloarchaea from hypersaline lakes.
    Sorokin DY; Elcheninov AG; Khijniak TV; Kolganova TV; Kublanov IV
    Front Microbiol; 2022; 13():1059347. PubMed ID: 36504804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity.
    de Souza Machado AA; Spencer K; Kloas W; Toffolon M; Zarfl C
    Sci Total Environ; 2016 Jan; 541():268-281. PubMed ID: 26410702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular transport and homeostasis of essential and nonessential metals.
    Martinez-Finley EJ; Chakraborty S; Fretham SJ; Aschner M
    Metallomics; 2012 Jul; 4(7):593-605. PubMed ID: 22337135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal limitation and toxicity at the interface between host and pathogen.
    Becker KW; Skaar EP
    FEMS Microbiol Rev; 2014 Nov; 38(6):1235-49. PubMed ID: 25211180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters.
    Luoma SN; Cain DJ; Rainbow PS
    Integr Environ Assess Manag; 2010 Apr; 6(2):199-209. PubMed ID: 20821686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular compartmentation of metals in aquatic organisms: roles in mechanisms of cell injury.
    Fowler BA
    Environ Health Perspect; 1987 Apr; 71():121-8. PubMed ID: 3297654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus.
    Dutton J; Fisher NS
    Environ Toxicol Chem; 2011 Sep; 30(9):2107-14. PubMed ID: 21688308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metal element homeostasis and oxidative stress in pathological processes].
    Szentmihályi K
    Orv Hetil; 2019 Sep; 160(36):1407-1416. PubMed ID: 31492083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.