These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 23533588)
1. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. Rosenberg Y; Sack M; Montefiori D; Forthal D; Mao L; Hernandez-Abanto S; Urban L; Landucci G; Fischer R; Jiang X PLoS One; 2013; 8(3):e58724. PubMed ID: 23533588 [TBL] [Abstract][Full Text] [Related]
2. Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Floss DM; Sack M; Arcalis E; Stadlmann J; Quendler H; Rademacher T; Stoger E; Scheller J; Fischer R; Conrad U Plant Biotechnol J; 2009 Dec; 7(9):899-913. PubMed ID: 19843249 [TBL] [Abstract][Full Text] [Related]
3. Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides. Hamorsky KT; Grooms-Williams TW; Husk AS; Bennett LJ; Palmer KE; Matoba N Antimicrob Agents Chemother; 2013 May; 57(5):2076-86. PubMed ID: 23403432 [TBL] [Abstract][Full Text] [Related]
4. Characterization of VRC01, a potent and broadly neutralizing anti-HIV mAb, produced in transiently and stably transformed tobacco. Teh AY; Maresch D; Klein K; Ma JK Plant Biotechnol J; 2014 Apr; 12(3):300-11. PubMed ID: 24256218 [TBL] [Abstract][Full Text] [Related]
5. Pharmacokinetics and immunogenicity of broadly neutralizing HIV monoclonal antibodies in macaques. Rosenberg Y; Sack M; Montefiori D; Labranche C; Lewis M; Urban L; Mao L; Fischer R; Jiang X PLoS One; 2015; 10(3):e0120451. PubMed ID: 25807114 [TBL] [Abstract][Full Text] [Related]
6. Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Vamvaka E; Twyman RM; Murad AM; Melnik S; Teh AY; Arcalis E; Altmann F; Stoger E; Rech E; Ma JK; Christou P; Capell T Plant Biotechnol J; 2016 Jan; 14(1):97-108. PubMed ID: 25845722 [TBL] [Abstract][Full Text] [Related]
7. Rapid production of HIV-1 neutralizing antibodies in baculovirus infected insect cells. Liu B; Wang R; Wu F; Xu X; Chen H Protein Expr Purif; 2014 Jul; 99():87-93. PubMed ID: 24746888 [TBL] [Abstract][Full Text] [Related]
8. Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. Cheeseman HM; Olejniczak NJ; Rogers PM; Evans AB; King DFL; Ziprin P; Liao HX; Haynes BF; Shattock RJ J Virol; 2017 Jan; 91(1):. PubMed ID: 27795431 [TBL] [Abstract][Full Text] [Related]
9. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. Hessell AJ; Rakasz EG; Poignard P; Hangartner L; Landucci G; Forthal DN; Koff WC; Watkins DI; Burton DR PLoS Pathog; 2009 May; 5(5):e1000433. PubMed ID: 19436712 [TBL] [Abstract][Full Text] [Related]
10. Characterization of human class-switched polymeric (immunoglobulin M [IgM] and IgA) anti-human immunodeficiency virus type 1 antibodies 2F5 and 2G12. Wolbank S; Kunert R; Stiegler G; Katinger H J Virol; 2003 Apr; 77(7):4095-103. PubMed ID: 12634368 [TBL] [Abstract][Full Text] [Related]
11. Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Vamvaka E; Farré G; Molinos-Albert LM; Evans A; Canela-Xandri A; Twyman RM; Carrillo J; Ordóñez RA; Shattock RJ; O'Keefe BR; Clotet B; Blanco J; Khush GS; Christou P; Capell T Proc Natl Acad Sci U S A; 2018 Aug; 115(33):E7854-E7862. PubMed ID: 30061386 [TBL] [Abstract][Full Text] [Related]
12. Long-term multiple-dose pharmacokinetics of human monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 envelope gp120 (MAb 2G12) and gp41 (MAbs 4E10 and 2F5). Joos B; Trkola A; Kuster H; Aceto L; Fischer M; Stiegler G; Armbruster C; Vcelar B; Katinger H; Günthard HF Antimicrob Agents Chemother; 2006 May; 50(5):1773-9. PubMed ID: 16641449 [TBL] [Abstract][Full Text] [Related]
13. Synergistic neutralization of a chimeric SIV/HIV type 1 virus with combinations of human anti-HIV type 1 envelope monoclonal antibodies or hyperimmune globulins. Li A; Baba TW; Sodroski J; Zolla-Pazner S; Gorny MK; Robinson J; Posner MR; Katinger H; Barbas CF; Burton DR; Chou TC; Ruprecht RM AIDS Res Hum Retroviruses; 1997 May; 13(8):647-56. PubMed ID: 9168233 [TBL] [Abstract][Full Text] [Related]
14. A novel anti-HIV-1 bispecific bNAb-lectin fusion protein engineered in a plant-based transient expression system. Seber Kasinger LE; Dent MW; Mahajan G; Hamorsky KT; Matoba N Plant Biotechnol J; 2019 Aug; 17(8):1646-1656. PubMed ID: 30729651 [TBL] [Abstract][Full Text] [Related]
15. Construction and phenotypic characterization of HIV type 1 functional envelope clones of subtypes G and F. Revilla A; Delgado E; Christian EC; Dalrymple J; Vega Y; Carrera C; González-Galeano M; Ocampo A; de Castro RO; Lezaún MJ; Rodríguez R; Mariño A; Ordóñez P; Cilla G; Cisterna R; Santamaría JM; Prieto S; Rakhmanova A; Vinogradova A; Ríos M; Pérez-Álvarez L; Nájera R; Montefiori DC; Seaman MS; Thomson MM AIDS Res Hum Retroviruses; 2011 Aug; 27(8):889-901. PubMed ID: 21226626 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of recently transmitted subtype B human immunodeficiency virus type 1 variants to broadly neutralizing antibodies. Quakkelaar ED; van Alphen FP; Boeser-Nunnink BD; van Nuenen AC; Pantophlet R; Schuitemaker H J Virol; 2007 Aug; 81(16):8533-42. PubMed ID: 17522228 [TBL] [Abstract][Full Text] [Related]
17. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. Hessell AJ; Rakasz EG; Tehrani DM; Huber M; Weisgrau KL; Landucci G; Forthal DN; Koff WC; Poignard P; Watkins DI; Burton DR J Virol; 2010 Feb; 84(3):1302-13. PubMed ID: 19906907 [TBL] [Abstract][Full Text] [Related]
18. Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Anti-HIV-1 Antibodies 2F5, 2G12, and PG9 in Plants. Puchol Tarazona AA; Lobner E; Taubenschmid Y; Paireder M; Torres Acosta JA; Göritzer K; Steinkellner H; Mach L Biotechnol J; 2020 Mar; 15(3):e1900308. PubMed ID: 31657528 [TBL] [Abstract][Full Text] [Related]
19. Glycan modulation and sulfoengineering of anti-HIV-1 monoclonal antibody PG9 in plants. Loos A; Gach JS; Hackl T; Maresch D; Henkel T; Porodko A; Bui-Minh D; Sommeregger W; Wozniak-Knopp G; Forthal DN; Altmann F; Steinkellner H; Mach L Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12675-80. PubMed ID: 26417081 [TBL] [Abstract][Full Text] [Related]
20. The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Niemer M; Mehofer U; Torres Acosta JA; Verdianz M; Henkel T; Loos A; Strasser R; Maresch D; Rademacher T; Steinkellner H; Mach L Biotechnol J; 2014 Apr; 9(4):493-500. PubMed ID: 24478053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]