These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23533767)

  • 21. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells.
    Jiang R; Xu XH; Wang K; Yang XZ; Bi YF; Yan Y; Liu JZ; Chen XN; Wang ZZ; Guo XL; Zhao DQ; Sun LW
    J Ethnopharmacol; 2017 Aug; 208():149-156. PubMed ID: 28689798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of tyrosinase activity on the cytotoxicity of 4-S-cysteaminylphenol and N-acetyl-4-S-cysteaminylphenol in melanoma cells.
    Prezioso JA; Epperly MW; Wang N; Bloomer WD
    Cancer Lett; 1992 Mar; 63(1):73-9. PubMed ID: 1555210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Melanogenesis and melanoma.
    Riley PA
    Pigment Cell Res; 2003 Oct; 16(5):548-52. PubMed ID: 12950735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.
    Yoo D; Jeong H; Noh SH; Lee JH; Cheon J
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):13047-51. PubMed ID: 24281889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melanogenesis: a realistic target for antimelanoma therapy?
    Riley PA
    Eur J Cancer; 1991; 27(9):1172-7. PubMed ID: 1835632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model.
    Ishii-Osai Y; Yamashita T; Tamura Y; Sato N; Ito A; Honda H; Wakamatsu K; Ito S; Nakayama E; Okura M; Jimbow K
    J Dermatol Sci; 2012 Jul; 67(1):51-60. PubMed ID: 22622238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of in vivo anti-melanoma effect of enantiomeric alpha-methyl- and alpha-ethyl-4-S-cysteaminylphenol.
    Yukitake J; Otake H; Inoue S; Wakamatsu K; Ito S
    Melanoma Res; 2004 Apr; 14(2):115-20. PubMed ID: 15057040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells.
    Slominski A; Zbytek B; Slominski R
    Int J Cancer; 2009 Mar; 124(6):1470-7. PubMed ID: 19085934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Curcumin associated magnetite nanoparticles inhibit in vitro melanoma cell growth.
    de Souza FF; dos Santos MC; dos Passos DC; Lima EC; Guillo LA
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7603-10. PubMed ID: 22097464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional particles for melanoma-targeted drug delivery.
    Wadajkar AS; Bhavsar Z; Ko CY; Koppolu B; Cui W; Tang L; Nguyen KT
    Acta Biomater; 2012 Aug; 8(8):2996-3004. PubMed ID: 22561668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanoma-reactive class I-restricted cytotoxic T cell clones are stimulated by dendritic cells loaded with synthetic peptides, but fail to respond to dendritic cells pulsed with melanoma-derived heat shock proteins in vitro.
    Fleischer K; Schmidt B; Kastenmüller W; Busch DH; Drexler I; Sutter G; Heike M; Peschel C; Bernhard H
    J Immunol; 2004 Jan; 172(1):162-9. PubMed ID: 14688322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.
    Qian Y; Qiao S; Dai Y; Xu G; Dai B; Lu L; Yu X; Luo Q; Zhang Z
    ACS Nano; 2017 Sep; 11(9):9536-9549. PubMed ID: 28858473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Utilization of melanin precursors for experimental chemotherapy of malignant melanoma].
    Jimbow K; Miura S; Ito Y; Kasuga T; Ito S
    Gan To Kagaku Ryoho; 1984 Oct; 11(10):2125-32. PubMed ID: 6435538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Safety assessment, biological effects, and mechanisms of Myrica rubra fruit extract for anti-melanogenesis, anti-oxidation, and free radical scavenging abilities on melanoma cells.
    Juang LJ; Gao XY; Mai ST; Lee CH; Lee MC; Yao CL
    J Cosmet Dermatol; 2019 Feb; 18(1):322-332. PubMed ID: 29460390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy.
    Cheng K; Ding Y; Zhao Y; Ye S; Zhao X; Zhang Y; Ji T; Wu H; Wang B; Anderson GJ; Ren L; Nie G
    Nano Lett; 2018 May; 18(5):3250-3258. PubMed ID: 29683683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfur containing tyrosine analogs can cause selective melanocytotoxicity involving tyrosinase-mediated apoptosis.
    Minamitsuji Y; Toyofuku K; Sugiyama S; Yamada K; Jimbow K
    J Investig Dermatol Symp Proc; 1999 Sep; 4(2):130-6. PubMed ID: 10536987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical and Biological Properties of 5-Fluorouracil Polymer-Coated Magnetite Nanographene Oxide as a New Thermosensitizer for Alternative Magnetic Hyperthermia and a Magnetic Resonance Imaging Contrast Agent: In Vitro and In Vivo Study.
    Kiamohammadi L; Asadi L; Shirvalilou S; Khoei S; Khoee S; Soleymani M; Minaei SE
    ACS Omega; 2021 Aug; 6(31):20192-20204. PubMed ID: 34395970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hesperetin induces melanin production in adult human epidermal melanocytes.
    Usach I; Taléns-Visconti R; Magraner-Pardo L; Peris JE
    Food Chem Toxicol; 2015 Jun; 80():80-84. PubMed ID: 25765751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine.
    Ookubo N; Michiue H; Kitamatsu M; Kamamura M; Nishiki T; Ohmori I; Matsui H
    Biomaterials; 2014 May; 35(15):4508-16. PubMed ID: 24602570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.