These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23533817)

  • 1. Axon guidance mechanisms for establishment of callosal connections.
    Nishikimi M; Oishi K; Nakajima K
    Neural Plast; 2013; 2013():149060. PubMed ID: 23533817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation and pathfinding of callosal axons through EphA3 signaling.
    Nishikimi M; Oishi K; Tabata H; Torii K; Nakajima K
    J Neurosci; 2011 Nov; 31(45):16251-60. PubMed ID: 22072676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons.
    Niquille M; Minocha S; Hornung JP; Rufer N; Valloton D; Kessaris N; Alfonsi F; Vitalis T; Yanagawa Y; Devenoges C; Dayer A; Lebrand C
    Dev Neurobiol; 2013 Sep; 73(9):647-72. PubMed ID: 23420573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum.
    Richards LJ
    Braz J Med Biol Res; 2002 Dec; 35(12):1431-9. PubMed ID: 12436186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Callosal axon guidance defects in p35(-/-) mice.
    Kwon YT; Tsai LH; Crandall JE
    J Comp Neurol; 1999 Dec; 415(2):218-29. PubMed ID: 10545161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PlexinA1 is crucial for the midline crossing of callosal axons during corpus callosum development in BALB/cAJ mice.
    Hossain MM; Tsuzuki T; Sakakibara K; Imaizumi F; Ikegaya A; Inagaki M; Takahashi I; Ito T; Takamatsu H; Kumanogoh A; Negishi T; Yukawa K
    PLoS One; 2019; 14(8):e0221440. PubMed ID: 31430342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice.
    Piper M; Moldrich RX; Lindwall C; Little E; Barry G; Mason S; Sunn N; Kurniawan ND; Gronostajski RM; Richards LJ
    Neural Dev; 2009 Dec; 4():43. PubMed ID: 19961580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient axonal branching in the developing corpus callosum.
    Kadhim HJ; Bhide PG; Frost DO
    Cereb Cortex; 1993; 3(6):551-66. PubMed ID: 8136653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy.
    Halloran MC; Kalil K
    J Neurosci; 1994 Apr; 14(4):2161-77. PubMed ID: 8158263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion of Inositol Polyphosphate 4-Phosphatase II Suppresses Callosal Axon Formation in the Developing Mice.
    Ji L; Kim NH; Huh SO; Rhee HJ
    Mol Cells; 2016 Jun; 39(6):501-7. PubMed ID: 27109423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of callosal connections in the sensorimotor cortex of the hamster.
    Norris CR; Kalil K
    J Comp Neurol; 1992 Dec; 326(1):121-32. PubMed ID: 1479065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice.
    Hakanen J; Salminen M
    Int J Dev Neurosci; 2015 Dec; 47(Pt B):206-15. PubMed ID: 26397040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor.
    Hu Z; Yue X; Shi G; Yue Y; Crockett DP; Blair-Flynn J; Reuhl K; Tessarollo L; Zhou R
    J Neurosci; 2003 Nov; 23(34):10963-70. PubMed ID: 14645492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation.
    Choe Y; Siegenthaler JA; Pleasure SJ
    Neuron; 2012 Feb; 73(4):698-712. PubMed ID: 22365545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astroglial-Mediated Remodeling of the Interhemispheric Midline Is Required for the Formation of the Corpus Callosum.
    Gobius I; Morcom L; Suárez R; Bunt J; Bukshpun P; Reardon W; Dobyns WB; Rubenstein JL; Barkovich AJ; Sherr EH; Richards LJ
    Cell Rep; 2016 Oct; 17(3):735-747. PubMed ID: 27732850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogenin2 regulates the initial axon guidance of cortical pyramidal neurons projecting medially to the corpus callosum.
    Hand R; Polleux F
    Neural Dev; 2011 Aug; 6():30. PubMed ID: 21864333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectional distinction between callosal and subcortically projecting cortical neurons is determined prior to axon extension.
    Koester SE; O'Leary DD
    Dev Biol; 1993 Nov; 160(1):1-14. PubMed ID: 8224528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C.
    Niquille M; Garel S; Mann F; Hornung JP; Otsmane B; Chevalley S; Parras C; Guillemot F; Gaspar P; Yanagawa Y; Lebrand C
    PLoS Biol; 2009 Oct; 7(10):e1000230. PubMed ID: 19859539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and reshaping of axons in the establishment of visual callosal connections.
    Innocenti GM
    Science; 1981 May; 212(4496):824-7. PubMed ID: 7221566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion.
    Fothergill T; Donahoo AL; Douglass A; Zalucki O; Yuan J; Shu T; Goodhill GJ; Richards LJ
    Cereb Cortex; 2014 May; 24(5):1138-51. PubMed ID: 23302812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.