These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23534026)

  • 1. Effect of water temperature on cyclic fatigue properties of glass-fiber-reinforced hybrid composite resin and its fracture pattern after flexural testing.
    Kuroda S; Shinya A; Vallittu PK; Nakasone Y; Shinya A
    J Adhes Dent; 2013 Feb; 15(1):19-26. PubMed ID: 23534026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.
    Narva KK; Lassila LV; Vallittu PK
    J Prosthet Dent; 2004 Feb; 91(2):158-63. PubMed ID: 14970762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glass fiber layering on the flexural strength of microfill and hybrid composites.
    Eronat N; Candan U; Türkün M
    J Esthet Restor Dent; 2009; 21(3):171-8; discussion 179-81. PubMed ID: 19508260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite.
    Ellakwa AE; Shortall AC; Marquis PM
    J Prosthet Dent; 2002 Nov; 88(5):485-90. PubMed ID: 12473997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite.
    Göhring TN; Gallo L; Lüthy H
    Dent Mater; 2005 Aug; 21(8):761-72. PubMed ID: 15885765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the effects of water immersion conditions on the durability of fiber-reinforced hybrid composite resin using static and dynamic tests.
    Kuroda S; Yokoyama D; Shinya A; Gomi H; Shinya A
    Dent Mater J; 2012; 31(3):449-57. PubMed ID: 22673462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a glass fiber-reinforced composite material to clasps--the effects of immersion and repeated loading.
    Kishita C; Hamano T; Tsuru K; Nishi Y; Nagaoka E
    Dent Mater J; 2004 Dec; 23(4):528-32. PubMed ID: 15688715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexural properties of denture base polymers reinforced with a glass cloth-urethane polymer composite.
    Kanie T; Arikawa H; Fujii K; Ban S
    Dent Mater; 2004 Oct; 20(8):709-16. PubMed ID: 15302451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.
    Maruo Y; Nishigawa G; Irie M; Yoshihara K; Minagi S
    Acta Odontol Scand; 2015; 73(8):581-7. PubMed ID: 25892406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of location of glass fiber-reinforced composite reinforcement on the flexural properties of a maxillary complete denture in vitro.
    Takahashi Y; Yoshida K; Shimizu H
    Acta Odontol Scand; 2011 Jul; 69(4):215-21. PubMed ID: 21281056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of some properties of two fiber-reinforced composite materials.
    Lassila LV; Tezvergil A; Lahdenperä M; Alander P; Shinya A; Shinya A; Vallittu PK
    Acta Odontol Scand; 2005 Aug; 63(4):196-204. PubMed ID: 16040441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexural fatigue behavior of machinable and light-activated hybrid composites for esthetic restorations.
    Yoshida K; Morimoto N; Tsuo Y; Atsuta M
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):218-22. PubMed ID: 15264303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix.
    Bae JM; Kim KN; Hattori M; Hasegawa K; Yoshinari M; Kawada E; Oda Y
    Int J Prosthodont; 2001; 14(1):33-9. PubMed ID: 11842902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR).
    Ellakwa A; Shortall A; Shehata M; Marquis P
    Oper Dent; 2001; 26(5):467-75. PubMed ID: 11551011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins.
    Machado AL; Puckett AD; Breeding LC; Wady AF; Vergani CE
    Gerodontology; 2012 Jun; 29(2):e318-23. PubMed ID: 21453415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexural strengths of denture base resin repaired with autopolymerizing resin and reinforcements after thermocycle stressing.
    Minami H; Suzuki S; Kurashige H; Minesaki Y; Tanaka T
    J Prosthodont; 2005 Mar; 14(1):12-8. PubMed ID: 15733130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotating fatigue and flexural strength of direct and indirect resin-composite restorative materials.
    Mirmohammadi H; Kleverlaan CJ; Feilzer AJ
    Am J Dent; 2009 Aug; 22(4):219-22. PubMed ID: 19824558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and cyclic loading of fiber-reinforced dental resin.
    Drummond JL; Bapna MS
    Dent Mater; 2003 May; 19(3):226-31. PubMed ID: 12628435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite resin reinforced with pre-tensioned glass fibers. Influence of prestressing on flexural properties.
    Schlichting LH; de Andrada MA; Vieira LC; de Oliveira Barra GM; Magne P
    Dent Mater; 2010 Feb; 26(2):118-25. PubMed ID: 19819003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners.
    Rached RN; de Souza EM; Dyer SR; Ferracane JL
    J Prosthet Dent; 2011 Nov; 106(5):297-304. PubMed ID: 22024179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.