These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23534209)

  • 1. Responses of protists with different feeding habits to the changes of activated sludge conditions: a study based on biomass data.
    Hu B; Qi R; An W; Yang M
    J Environ Sci (China); 2012; 24(12):2127-32. PubMed ID: 23534209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the microfauna community in a full-scale municipal wastewater treatment plant experiencing sludge bulking.
    Hu B; Qi R; An W; Xu M; Zhang Y; Bai X; Bao H; Wen Y; Gu J; Yang M
    Eur J Protistol; 2013 Nov; 49(4):491-9. PubMed ID: 23628141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.
    Rodriguez-Perez S; Fermoso FG; Arnaiz C
    Water Sci Technol; 2016; 74(3):595-605. PubMed ID: 27508364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filamentous sludge bulking control by nano zero-valent iron in activated sludge treatment systems.
    Xu S; Sun M; Zhang C; Surampalli R; Hu Z
    Environ Sci Process Impacts; 2014 Dec; 16(12):2721-8. PubMed ID: 25386669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying different types of bulking in an activated sludge system through quantitative image analysis.
    Mesquita DP; Amaral AL; Ferreira EC
    Chemosphere; 2011 Oct; 85(4):643-52. PubMed ID: 21840038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate uptake tests and quantitative FISH show differences in kinetic growth of bulking and non-bulking activated sludge.
    Lou I; de Los Reyes FL
    Biotechnol Bioeng; 2005 Dec; 92(6):729-39. PubMed ID: 16155949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of species-specific filament levels to filamentous bulking in activated sludge.
    Liao J; Lou I; de los Reyes FL
    Appl Environ Microbiol; 2004 Apr; 70(4):2420-8. PubMed ID: 15066840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protists as bioindicators in activated sludge: Identification, ecology and future needs.
    Foissner W
    Eur J Protistol; 2016 Aug; 55(Pt A):75-94. PubMed ID: 27062305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant.
    Wang P; Yu Z; Qi R; Zhang H
    Water Res; 2016 Nov; 105():157-166. PubMed ID: 27614036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of three different predatory ciliate species on activated sludge microfauna.
    Pajdak-Stós A; Sobczyk M; Fiałkowska E; Kocerba-Soroka W; Fyda J
    Eur J Protistol; 2017 Apr; 58():87-93. PubMed ID: 28131037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs).
    Fyda J; Babko R; Fiałkowska E; Pajdak-Stós A; Kocerba-Soroka W; Sobczyk M; Sobczyk Ł
    Eur J Protistol; 2015 Oct; 51(5):470-9. PubMed ID: 26465372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A test for predicting propensity of activated sludge to acute filamentous bulking.
    Séka MA; Cabooter S; Verstraete W
    Water Environ Res; 2001; 73(2):237-42. PubMed ID: 11563384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of rotifers for limiting filamentous bacteria Type 021N, a bacteria causing activated sludge bulking.
    Kocerba-Soroka W; Fiałkowska E; Pajdak-Stós A; Klimek B; Kowalska E; Drzewicki A; Salvadó H; Fyda J
    Water Sci Technol; 2013; 67(7):1557-63. PubMed ID: 23552245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of an oxic settling anoxic system on biomass yield, protozoa and filamentous bacteria.
    Rodriguez-Perez S; Gutierrez JC; Fermoso FG; Arnaiz C
    Bioresour Technol; 2016 Jan; 200():170-7. PubMed ID: 26479432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model.
    Flores-Alsina X; Comas J; Rodriguez-Roda I; Gernaey KV; Rosen C
    Water Res; 2009 Oct; 43(18):4527-38. PubMed ID: 19695661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of synthetic polymer on the filamentous bacteria in activated sludge.
    Juang DF
    Bioresour Technol; 2005 Jan; 96(1):31-40. PubMed ID: 15364077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filamentous bulking sludge--a critical review.
    Martins AM; Pagilla K; Heijnen JJ; van Loosdrecht MC
    Water Res; 2004 Feb; 38(4):793-817. PubMed ID: 14769404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of Sludge Biotic Index (SBI), Sludge Index (SI) and filamentous bacteria analysis for assessing activated sludge process performance: the case of piggery slaughterhouse wastewater.
    Pedrazzani R; Menoni L; Nembrini S; Manili L; Bertanza G
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):953-64. PubMed ID: 27072565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus defficiency and sludge bulking.
    Turtin I; Vatansever A; Sanin FD
    Environ Technol; 2006 Jun; 27(6):613-21. PubMed ID: 16865917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.