These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 23534394)
1. Comparison of in silico models for prediction of mutagenicity. Bakhtyari NG; Raitano G; Benfenati E; Martin T; Young D J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(1):45-66. PubMed ID: 23534394 [TBL] [Abstract][Full Text] [Related]
2. Comparative evaluation of in silico systems for ames test mutagenicity prediction: scope and limitations. Hillebrecht A; Muster W; Brigo A; Kansy M; Weiser T; Singer T Chem Res Toxicol; 2011 Jun; 24(6):843-54. PubMed ID: 21534561 [TBL] [Abstract][Full Text] [Related]
3. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. Greene N; Judson PN; Langowski JJ; Marchant CA SAR QSAR Environ Res; 1999; 10(2-3):299-314. PubMed ID: 10491855 [TBL] [Abstract][Full Text] [Related]
4. Comparison of in silico models for prediction of Daphnia magna acute toxicity. Golbamaki A; Cassano A; Lombardo A; Moggio Y; Colafranceschi M; Benfenati E SAR QSAR Environ Res; 2014; 25(8):673-94. PubMed ID: 24911142 [TBL] [Abstract][Full Text] [Related]
5. A multiple in silico program approach for the prediction of mutagenicity from chemical structure. White AC; Mueller RA; Gallavan RH; Aaron S; Wilson AG Mutat Res; 2003 Aug; 539(1-2):77-89. PubMed ID: 12948816 [TBL] [Abstract][Full Text] [Related]
6. Comparison of in silico tools for evaluating rat oral acute toxicity. Diaza RG; Manganelli S; Esposito A; Roncaglioni A; Manganaro A; Benfenati E SAR QSAR Environ Res; 2015; 26(1):1-27. PubMed ID: 25567032 [TBL] [Abstract][Full Text] [Related]
7. In silico prediction of chemical Ames mutagenicity. Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379 [TBL] [Abstract][Full Text] [Related]
8. Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals. Contrera JF Regul Toxicol Pharmacol; 2013 Nov; 67(2):285-93. PubMed ID: 23969001 [TBL] [Abstract][Full Text] [Related]
9. Prediction of mutagenicity and carcinogenicity using in silico modelling: A case study of polychlorinated biphenyls. Vračko M; Bobst S SAR QSAR Environ Res; 2015; 26(7-9):667-82. PubMed ID: 26329919 [TBL] [Abstract][Full Text] [Related]
10. Performance of In Silico Models for Mutagenicity Prediction of Food Contact Materials. Van Bossuyt M; Van Hoeck E; Raitano G; Vanhaecke T; Benfenati E; Mertens B; Rogiers V Toxicol Sci; 2018 Jun; 163(2):632-638. PubMed ID: 29579255 [TBL] [Abstract][Full Text] [Related]
11. QSAR and metabolic assessment tools in the assessment of genotoxicity. Worth AP; Lapenna S; Serafimova R Methods Mol Biol; 2013; 930():125-62. PubMed ID: 23086840 [TBL] [Abstract][Full Text] [Related]
12. Merging applicability domains for in silico assessment of chemical mutagenicity. Liu R; Wallqvist A J Chem Inf Model; 2014 Mar; 54(3):793-800. PubMed ID: 24494696 [TBL] [Abstract][Full Text] [Related]
13. Comparative evaluation of 11 in silico models for the prediction of small molecule mutagenicity: role of steric hindrance and electron-withdrawing groups. Ford KA; Ryslik G; Chan BK; Lewin-Koh SC; Almeida D; Stokes M; Gomez SR Toxicol Mech Methods; 2017 Jan; 27(1):24-35. PubMed ID: 27813437 [TBL] [Abstract][Full Text] [Related]
14. Simple and alpha,beta-unsaturated aldehydes: correct prediction of genotoxic activity through structure-activity relationship models. Benigni R; Conti L; Crebelli R; Rodomonte A; Vari' MR Environ Mol Mutagen; 2005 Dec; 46(4):268-80. PubMed ID: 15991240 [TBL] [Abstract][Full Text] [Related]
15. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Teubner W; Mehling A; Schuster PX; Guth K; Worth A; Burton J; van Ravenzwaay B; Landsiedel R Regul Toxicol Pharmacol; 2013 Dec; 67(3):468-85. PubMed ID: 24090701 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive Estimate of Risk from Existing Knowledge. Toxicity Prediction by Komputer Assisted Technology. Cariello NF; Wilson JD; Britt BH; Wedd DJ; Burlinson B; Gombar V Mutagenesis; 2002 Jul; 17(4):321-9. PubMed ID: 12110629 [TBL] [Abstract][Full Text] [Related]
17. The application of structure-activity relationships to the prediction of the mutagenic activity of chemicals. Judson P Methods Mol Biol; 2012; 817():1-19. PubMed ID: 22147565 [TBL] [Abstract][Full Text] [Related]
18. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities. Valencia A; Prous J; Mora O; Sadrieh N; Valerio LG Toxicol Appl Pharmacol; 2013 Dec; 273(3):427-34. PubMed ID: 24090816 [TBL] [Abstract][Full Text] [Related]
19. In silico prediction of chromosome damage: comparison of three (Q)SAR models. Morita T; Shigeta Y; Kawamura T; Fujita Y; Honda H; Honma M Mutagenesis; 2019 Mar; 34(1):91-100. PubMed ID: 30085209 [TBL] [Abstract][Full Text] [Related]
20. Mutagenic probability estimation of chemical compounds by a novel molecular electrophilicity vector and support vector machine. Zheng M; Liu Z; Xue C; Zhu W; Chen K; Luo X; Jiang H Bioinformatics; 2006 Sep; 22(17):2099-106. PubMed ID: 16837526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]