These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 23534399)

  • 1. Topological investigation of glucosyltransferase V in Shigella flexneri using the substituted cysteine accessibility method.
    Rusden AD; Stephenson DP; Verma NK
    Biochemistry; 2013 Apr; 52(15):2655-61. PubMed ID: 23534399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of essential loops and residues of glucosyltransferase V (GtrV) of Shigella flexneri.
    Korres H; Verma NK
    Mol Membr Biol; 2006; 23(5):407-19. PubMed ID: 17060158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological analysis of glucosyltransferase GtrV of Shigella flexneri by a dual reporter system and identification of a unique reentrant loop.
    Korres H; Verma NK
    J Biol Chem; 2004 May; 279(21):22469-76. PubMed ID: 15028730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of active site residues in the Shigella flexneri glucosyltransferase GtrV.
    Moscoso JA; Korres H; George DT; Verma NK
    Mol Membr Biol; 2010 Apr; 27(2-3):104-13. PubMed ID: 20334579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage-encoded glucosyltransferase GtrII of Shigella flexneri: membrane topology and identification of critical residues.
    Lehane AM; Korres H; Verma NK
    Biochem J; 2005 Jul; 389(Pt 1):137-43. PubMed ID: 15766330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological characterisation and identification of critical domains within glucosyltransferase IV (GtrIV) of Shigella flexneri.
    Nair A; Korres H; Verma NK
    BMC Biochem; 2011 Dec; 12():67. PubMed ID: 22188643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional divergence of the newly identified GtrIc from its Gtr family of conserved Shigella flexneri serotype-converting glucosyltransferases.
    Ramiscal RR; Tang SS; Korres H; Verma NK
    Mol Membr Biol; 2010 Apr; 27(2-3):114-22. PubMed ID: 20095950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological analysis of GtrA and GtrB proteins encoded by the serotype-converting cassette of Shigella flexneri.
    Korres H; Mavris M; Morona R; Manning PA; Verma NK
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1252-60. PubMed ID: 15708010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topology and identification of critical residues of the O-acetyltransferase of serotype-converting bacteriophage, SF6, of Shigella flexneri.
    Thanweer F; Tahiliani V; Korres H; Verma NK
    Biochem Biophys Res Commun; 2008 Oct; 375(4):581-5. PubMed ID: 18755141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and topological analysis of the Burkholderia cenocepacia priming glucosyltransferase BceB, involved in the biosynthesis of the cepacian exopolysaccharide.
    Videira PA; Garcia AP; Sá-Correia I
    J Bacteriol; 2005 Jul; 187(14):5013-8. PubMed ID: 15995219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiary contacts of helix V in the lactose permease determined by site-directed chemical cross-linking in situ.
    Wu J; Hardy D; Kaback HR
    Biochemistry; 1999 Feb; 38(8):2320-5. PubMed ID: 10029525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter.
    Olsowski A; Monden I; Keller K
    Biochemistry; 1998 Jul; 37(30):10738-45. PubMed ID: 9692964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis.
    Hans J; Brandt W; Vogt T
    Plant J; 2004 Aug; 39(3):319-33. PubMed ID: 15255862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane.
    Vervoort EB; Bultema JB; Schuurman-Wolters GK; Geertsma ER; Broos J; Poolman B
    J Mol Biol; 2005 Feb; 346(3):733-43. PubMed ID: 15713459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological analysis of the Escherichia coli WcaJ protein reveals a new conserved configuration for the polyisoprenyl-phosphate hexose-1-phosphate transferase family.
    Furlong SE; Ford A; Albarnez-Rodriguez L; Valvano MA
    Sci Rep; 2015 Mar; 5():9178. PubMed ID: 25776537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation.
    Parat M; Blanchet J; De Léan A
    Biochemistry; 2010 Jun; 49(22):4601-10. PubMed ID: 20214400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes.
    Zhang W; Guan L; Kaback HR
    J Mol Biol; 2002 Jan; 315(1):53-62. PubMed ID: 11771965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology of the retinal cone NCKX2 Na/Ca-K exchanger.
    Kinjo TG; Szerencsei RT; Winkfein RJ; Kang K; Schnetkamp PP
    Biochemistry; 2003 Mar; 42(8):2485-91. PubMed ID: 12600216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of Membrane Protein Topology by Substituted Cysteine Accessibility Method (SCAM™).
    Bogdanov M
    Methods Mol Biol; 2017; 1615():105-128. PubMed ID: 28667607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.