BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23534460)

  • 1. Arg314 is essential for catalysis by N-acetyl neuraminic acid synthase from Neisseria meningitidis.
    Joseph DD; Jiao W; Parker EJ
    Biochemistry; 2013 Apr; 52(15):2609-19. PubMed ID: 23534460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-mediated control of the conformation of an ancillary domain delivers a competent catalytic site for N-acetylneuraminic acid synthase.
    Joseph DD; Jiao W; Kessans SA; Parker EJ
    Proteins; 2014 Sep; 82(9):2054-66. PubMed ID: 24633984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of a new N-acetylneuraminate synthase (NeuB1) from Idiomarina loihiensis.
    García García MI; Lau K; von Itzstein M; García Carmona F; Sánchez Ferrer Á
    Glycobiology; 2015 Jan; 25(1):115-23. PubMed ID: 25214154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression, and characterization of sialic acid synthases.
    Hao J; Balagurumoorthy P; Sarilla S; Sundaramoorthy M
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1507-14. PubMed ID: 16274664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn2+, phosphoenolpyruvate, and N-acetylmannosaminitol.
    Gunawan J; Simard D; Gilbert M; Lovering AL; Wakarchuk WW; Tanner ME; Strynadka NC
    J Biol Chem; 2005 Feb; 280(5):3555-63. PubMed ID: 15516336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni.
    Sundaram AK; Pitts L; Muhammad K; Wu J; Betenbaugh M; Woodard RW; Vann WF
    Biochem J; 2004 Oct; 383(Pt 1):83-9. PubMed ID: 15200387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the role of a key conserved motif for substrate selection and catalysis by 3-deoxy-D-manno-octulosonate 8-phosphate synthase.
    Allison TM; Hutton RD; Cochrane FC; Yeoman JA; Jameson GB; Parker EJ
    Biochemistry; 2011 May; 50(18):3686-95. PubMed ID: 21438567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Neisseria meningitidis sialic acid synthase by a tetrahedral intermediate analogue.
    Liu F; Lee HJ; Strynadka NC; Tanner ME
    Biochemistry; 2009 Oct; 48(39):9194-201. PubMed ID: 19719325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining the role of intersubunit contacts in catalysis by 3-deoxy-d-manno-octulosonate 8-phosphate synthase.
    Allison TM; Cochrane FC; Jameson GB; Parker EJ
    Biochemistry; 2013 Jul; 52(27):4676-86. PubMed ID: 23746359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the sialic acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial synthesis of 7-O-acetylated sialic acids.
    Gurung MK; Ræder IL; Altermark B; Smalås AO
    Glycobiology; 2013 Jul; 23(7):806-19. PubMed ID: 23481098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extended β7α7 substrate-binding loop is essential for efficient catalysis by 3-deoxy-D-manno-octulosonate 8-phosphate synthase.
    Allison TM; Hutton RD; Jiao W; Gloyne BJ; Nimmo EB; Jameson GB; Parker EJ
    Biochemistry; 2011 Nov; 50(43):9318-27. PubMed ID: 21942786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation.
    Shumilin IA; Bauerle R; Wu J; Woodard RW; Kretsinger RH
    J Mol Biol; 2004 Aug; 341(2):455-66. PubMed ID: 15276836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase: an ancestral 3-deoxyald-2-ulosonate-phosphate synthase?
    Schofield LR; Anderson BF; Patchett ML; Norris GE; Jameson GB; Parker EJ
    Biochemistry; 2005 Sep; 44(36):11950-62. PubMed ID: 16142893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of (E)- and (Z)-phosphoenol-3-fluoropyruvate as mechanistic probes reveals significant differences between the active sites of KDO8P and DAHP synthases.
    Furdui CM; Sau AK; Yaniv O; Belakhov V; Woodard RW; Baasov T; Anderson KS
    Biochemistry; 2005 May; 44(19):7326-35. PubMed ID: 15882071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and structural elucidation of novel NmeNANAS inhibitors for the treatment of meningococcal infection.
    Alwassil OI; Chandrashekharappa S; Nayak SK; Venugopala KN
    PLoS One; 2019; 14(10):e0223413. PubMed ID: 31618227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabinose 5-phosphate analogues as mechanistic probes for Neisseria meningitidis 3-deoxy-D-manno-octulosonate 8-phosphate synthase.
    Ahn M; Cochrane FC; Patchett ML; Parker EJ
    Bioorg Med Chem; 2008 Nov; 16(22):9830-6. PubMed ID: 18930408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energy landscape of 3-deoxy-D-manno-octulosonate 8-phosphate synthase.
    Tao P; Gatti DL; Schlegel HB
    Biochemistry; 2009 Dec; 48(49):11706-14. PubMed ID: 19891460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis.
    Kona F; Tao P; Martin P; Xu X; Gatti DL
    Biochemistry; 2009 Apr; 48(16):3610-30. PubMed ID: 19228070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: comparison of the Mn(2+)*2-phosphoglycolate and the Pb(2+)*2-phosphoenolpyruvate complexes and implications for catalysis.
    Wagner T; Shumilin IA; Bauerle R; Kretsinger RH
    J Mol Biol; 2000 Aug; 301(2):389-99. PubMed ID: 10926516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.