These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 23534665)

  • 21. Hydrophobic and ionic interactions in nanosized water droplets.
    Vaitheeswaran S; Thirumalai D
    J Am Chem Soc; 2006 Oct; 128(41):13490-6. PubMed ID: 17031962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microsolvation of the sodium and iodide ions and their ion pair in acetonitrile clusters: a theoretical study.
    Nguyen TN; Hughes SR; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):621-35. PubMed ID: 18183958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations.
    Bruzzone S; Malvaldi M; Chiappe C
    J Chem Phys; 2008 Aug; 129(7):074509. PubMed ID: 19044785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accounting for electronic polarization in non-polarizable force fields.
    Leontyev I; Stuchebrukhov A
    Phys Chem Chem Phys; 2011 Feb; 13(7):2613-26. PubMed ID: 21212894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-dimensional model for water and aqueous solutions. II. Solvation of inert solutes in water.
    Ben-Naim A
    J Chem Phys; 2008 Jan; 128(2):024506. PubMed ID: 18205458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature and length scale dependence of tetraalkylammonium ion solvation in water, formamide, and ethylene glycol.
    Kustov AV; Smirnova NL
    J Phys Chem B; 2011 Dec; 115(49):14551-5. PubMed ID: 21950326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic force field optimization based on single-ion and ion-pair solvation properties.
    Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR
    J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water and other tetrahedral liquids: order, anomalies and solvation.
    Jabes BS; Nayar D; Dhabal D; Molinero V; Chakravarty C
    J Phys Condens Matter; 2012 Jul; 24(28):284116. PubMed ID: 22739063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An atomic and molecular view of the depth dependence of the free energies of solute transfer from water into lipid bilayers.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    Mol Pharm; 2011 Dec; 8(6):2204-15. PubMed ID: 21988564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models.
    Chatterjee S; Debenedetti PG; Stillinger FH; Lynden-Bell RM
    J Chem Phys; 2008 Mar; 128(12):124511. PubMed ID: 18376947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decomposition of the solvation free energies of deoxyribonucleoside triphosphates using the free energy perturbation method.
    Bren U; Martínek V; Florián J
    J Phys Chem B; 2006 Jun; 110(25):12782-8. PubMed ID: 16800613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.
    Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A
    Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized solvation heat capacities.
    Ben-Amotz D; Widom B
    J Phys Chem B; 2006 Oct; 110(40):19839-49. PubMed ID: 17020369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.