These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 23534857)
1. Skin sensitization of epoxyaldehydes: importance of conjugation. Delaine T; Hagvall L; Rudbäck J; Luthman K; Karlberg AT Chem Res Toxicol; 2013 May; 26(5):674-84. PubMed ID: 23534857 [TBL] [Abstract][Full Text] [Related]
2. Epoxyalcohols: bioactivation and conjugation required for skin sensitization. Delaine T; Ponting DJ; Niklasson IB; Emter R; Hagvall L; Norrby PO; Natsch A; Luthman K; Karlberg AT Chem Res Toxicol; 2014 Oct; 27(10):1860-70. PubMed ID: 25195701 [TBL] [Abstract][Full Text] [Related]
3. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay. Takeyoshi M; Iida K; Shiraishi K; Hoshuyama S J Appl Toxicol; 2005; 25(2):129-34. PubMed ID: 15744759 [TBL] [Abstract][Full Text] [Related]
4. Metabolic epoxidation of an alpha,beta-unsaturated oxime generates sensitizers of extreme potency. Are nitroso intermediates responsible? Bergström MA; Luthman K; Karlberg AT Chem Res Toxicol; 2007 Jun; 20(6):927-36. PubMed ID: 17511479 [TBL] [Abstract][Full Text] [Related]
5. Impact of a heteroatom in a structure-activity relationship study on analogues of phenyl glycidyl ether (PGE) from epoxy resin systems. Niklasson IB; Delaine T; Luthman K; Karlberg AT Chem Res Toxicol; 2011 Apr; 24(4):542-8. PubMed ID: 21370839 [TBL] [Abstract][Full Text] [Related]
6. Reduced sensitizing capacity of epoxy resin systems: a structure-activity relationship study. Niklasson IB; Broo K; Jonsson C; Luthman K; Karlberg AT Chem Res Toxicol; 2009 Nov; 22(11):1787-94. PubMed ID: 19725531 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of skin sensitization potency of acrylates (methyl acrylate, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate) using the local lymph node assay. Dearman RJ; Betts CJ; Farr C; McLaughlin J; Berdasco N; Wiench K; Kimber I Contact Dermatitis; 2007 Oct; 57(4):242-7. PubMed ID: 17868217 [TBL] [Abstract][Full Text] [Related]
8. Development of a peptide reactivity assay for screening contact allergens. Gerberick GF; Vassallo JD; Bailey RE; Chaney JG; Morrall SW; Lepoittevin JP Toxicol Sci; 2004 Oct; 81(2):332-43. PubMed ID: 15254333 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the skin sensitization potency of eugenol and its dimers using a non-radioisotopic modification of the local lymph node assay. Takeyoshi M; Noda S; Yamazaki S; Kakishima H; Yamasaki K; Kimber I J Appl Toxicol; 2004; 24(1):77-81. PubMed ID: 14745850 [TBL] [Abstract][Full Text] [Related]
10. Fragrance compound geraniol forms contact allergens on air exposure. Identification and quantification of oxidation products and effect on skin sensitization. Hagvall L; Bäcktorp C; Svensson S; Nyman G; Börje A; Karlberg AT Chem Res Toxicol; 2007 May; 20(5):807-14. PubMed ID: 17428070 [TBL] [Abstract][Full Text] [Related]
11. Quantitative relationship between the local lymph node assay and human skin sensitization assays. Schneider K; Akkan Z Regul Toxicol Pharmacol; 2004 Jun; 39(3):245-55. PubMed ID: 15135206 [TBL] [Abstract][Full Text] [Related]
12. Non-enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization. Aptula AO; Patlewicz G; Roberts DW; Schultz TW Toxicol In Vitro; 2006 Mar; 20(2):239-47. PubMed ID: 16112535 [TBL] [Abstract][Full Text] [Related]
13. Skin sensitization potency of methyl methacrylate in the local lymph node assay: comparisons with guinea-pig data and human experience. Betts CJ; Dearman RJ; Heylings JR; Kimber I; Basketter DA Contact Dermatitis; 2006 Sep; 55(3):140-7. PubMed ID: 16918612 [TBL] [Abstract][Full Text] [Related]
14. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens. Hagvall L; Baron JM; Börje A; Weidolf L; Merk H; Karlberg AT Toxicol Appl Pharmacol; 2008 Dec; 233(2):308-13. PubMed ID: 18824010 [TBL] [Abstract][Full Text] [Related]
15. The impact of vehicle on the relative potency of skin-sensitizing chemicals in the local lymph node assay. Jowsey IR; Clapp CJ; Safford B; Gibbons BT; Basketter DA Cutan Ocul Toxicol; 2008; 27(2):67-75. PubMed ID: 18568891 [TBL] [Abstract][Full Text] [Related]
16. Contact allergenic potency: correlation of human and local lymph node assay data. Gerberick GF; Robinson MK; Ryan CA; Dearman RJ; Kimber I; Basketter DA; Wright Z; Marks JG Am J Contact Dermat; 2001 Sep; 12(3):156-61. PubMed ID: 11526521 [TBL] [Abstract][Full Text] [Related]
17. Structure-Potency Relationships for Epoxides in Allergic Contact Dermatitis. Roberts DW; Aptula A; Api AM Chem Res Toxicol; 2017 Feb; 30(2):524-531. PubMed ID: 28121139 [TBL] [Abstract][Full Text] [Related]
18. Characterization of skin sensitizers from autoxidized citronellol - impact of the terpene structure on the autoxidation process. Rudbäck J; Hagvall L; Börje A; Nilsson U; Karlberg AT Contact Dermatitis; 2014 Jun; 70(6):329-39. PubMed ID: 24673435 [TBL] [Abstract][Full Text] [Related]
19. Skin sensitization potency of isoeugenol and its dimers evaluated by a non-radioisotopic modification of the local lymph node assay and guinea pig maximization test. Takeyoshi M; Iida K; Suzuki K; Yamazaki S J Appl Toxicol; 2008 May; 28(4):530-4. PubMed ID: 17929237 [TBL] [Abstract][Full Text] [Related]
20. A conjugated diene identified as a prohapten: contact allergenic activity and chemical reactivity of proposed epoxide metabolites. Nilsson AM; Bergström MA; Luthman K; Nilsson JL; Karlberg AT Chem Res Toxicol; 2005 Feb; 18(2):308-16. PubMed ID: 15720137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]