BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23534879)

  • 1. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Lima AL; Oliveira RS
    New Phytol; 2013 Jul; 199(1):151-162. PubMed ID: 23534879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Burgess SS; Oliveira RS
    Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change.
    Eller CB; Lima AL; Oliveira RS
    New Phytol; 2016 Jul; 211(2):489-501. PubMed ID: 27038126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.
    Berry ZC; White JC; Smith WK
    Tree Physiol; 2014 May; 34(5):459-70. PubMed ID: 24835239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation?
    Holanda AER; Souza BC; Carvalho ECD; Oliveira RS; Martins FR; Muniz CR; Costa RC; Soares AA
    Plant Biol (Stuttg); 2019 Nov; 21(6):1097-1109. PubMed ID: 31251437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar water-uptake strategies are related to leaf water status and gas exchange in plants from a ferruginous rupestrian field.
    Boanares D; Kozovits AR; Lemos-Filho JP; Isaias RMS; Solar RRR; Duarte AA; Vilas-Boas T; França MGC
    Am J Bot; 2019 Jul; 106(7):935-942. PubMed ID: 31281976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest.
    Meinzer FC; Woodruff DR; Eissenstat DM; Lin HS; Adams TS; McCulloh KA
    Tree Physiol; 2013 Apr; 33(4):345-56. PubMed ID: 23513033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foliar uptake of fog in coastal California shrub species.
    Emery NC
    Oecologia; 2016 Nov; 182(3):731-42. PubMed ID: 27568025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates.
    Oliveira RS; Eller CB; Bittencourt PR; Mulligan M
    Ann Bot; 2014 May; 113(6):909-20. PubMed ID: 24759267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverging drought-tolerance strategies explain tree species distribution along a fog-dependent moisture gradient in a temperate rain forest.
    Negret BS; Pérez F; Markesteijn L; Castillo MJ; Armesto JJ
    Oecologia; 2013 Nov; 173(3):625-35. PubMed ID: 23576107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated CO₂ enhances leaf senescence during extreme drought in a temperate forest.
    Warren JM; Norby RJ; Wullschleger SD
    Tree Physiol; 2011 Feb; 31(2):117-30. PubMed ID: 21427157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit.
    Simonin KA; Santiago LS; Dawson TE
    Plant Cell Environ; 2009 Jul; 32(7):882-92. PubMed ID: 19302173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction.
    Yoshifuji N; Kumagai T; Ichie T; Kume T; Tateishi M; Inoue Y; Yoneyama A; Nakashizuka T
    J Plant Res; 2020 Mar; 133(2):175-191. PubMed ID: 31858360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability.
    Karuppanapandian T; Geilfus CM; Mühling KH; Novák O; Gloser V
    Plant Sci; 2017 Feb; 255():51-58. PubMed ID: 28131341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.
    Limm EB; Simonin KA; Bothman AG; Dawson TE
    Oecologia; 2009 Sep; 161(3):449-59. PubMed ID: 19585154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata.
    Mitchell PJ; McAdam SA; Pinkard EA; Brodribb TJ
    Tree Physiol; 2017 Feb; 37(2):236-245. PubMed ID: 28399262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The water relations and xylem attributes of albino redwood shoots (Sequioa sempervirens (D. Don.) Endl.).
    Pittermann J; Cowan J; Kaufman N; Baer A; Zhang E; Kuty D
    PLoS One; 2018; 13(3):e0191836. PubMed ID: 29590113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling foliar water uptake pathways: The contribution of stomata and the cuticle.
    Guzmán-Delgado P; Laca E; Zwieniecki MA
    Plant Cell Environ; 2021 Jun; 44(6):1728-1740. PubMed ID: 33665817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new look at water transport regulation in plants.
    Martínez-Vilalta J; Poyatos R; Aguadé D; Retana J; Mencuccini M
    New Phytol; 2014 Oct; 204(1):105-115. PubMed ID: 24985503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.