These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23535)

  • 1. A pH-conditional mutant of Escherichia coli.
    Colb M; Shapiro L
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5637-41. PubMed ID: 23535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta-Galactosidase from osmotic remedial lactose utilization mutants of E. coli.
    Vinopal RT; Wartell SA; Kolowsky KS
    Basic Life Sci; 1979; 14():59-72. PubMed ID: 121698
    [No Abstract]   [Full Text] [Related]  

  • 3. Functional properties of beta-galactosidase from mutant strain 13 PO of Escherichia coli.
    Deschavanne PJ; Viratelle OM; Yon JM
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1892-6. PubMed ID: 25441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the evolution of beta-galactosidase.
    Hood JM; Fowler AV; Zabin I
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):113-6. PubMed ID: 415304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitness effects of amino acid replacements in the beta-galactosidase of Escherichia coli.
    Dean AM; Dykhuizen DE; Hartl DL
    Mol Biol Evol; 1988 Sep; 5(5):469-85. PubMed ID: 3143044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutant Ebg enzyme that converts lactose into an inducer of the lac operon.
    Rolseth SJ; Fried VA; Hall BG
    J Bacteriol; 1980 Jun; 142(3):1036-9. PubMed ID: 6769907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the substrate specificities of an enzyme during directed evolution of new functions.
    Hall BG
    Biochemistry; 1981 Jul; 20(14):4042-9. PubMed ID: 6793063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of a new enzymatic function by recombination within a gene.
    Hall BG; Zuzel T
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3529-33. PubMed ID: 6774339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of newly evolved enzymes. IV. Directed evolution of the Ebg repressor.
    Hall BG
    Genetics; 1978 Dec; 90(4):673-81. PubMed ID: 105963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of the Saccharomyces cerevisiae leu2 gene to an Escherichia coli beta-galactosidase gene.
    Martinez-Arias AE; Casadaban MJ
    Mol Cell Biol; 1983 Apr; 3(4):580-6. PubMed ID: 6406836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli growth on lactose requires cycling of beta-galactosidase products into the medium.
    Huber RE; Hurlburt KL
    Can J Microbiol; 1984 Mar; 30(3):411-5. PubMed ID: 6426769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus.
    Park AR; Oh DK
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1427-35. PubMed ID: 19662397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic regulation: yeast mutants constitutive for beta-galactosidase activity have an increased level of beta-galactosidase messenger ribonucleic acid.
    Dickson RC; Sheetz RM; Lacy LR
    Mol Cell Biol; 1981 Nov; 1(11):1048-56. PubMed ID: 6810093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the acidotolerance of beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion.
    Rhimi M; Aghajari N; Jaouadi B; Juy M; Boudebbouze S; Maguin E; Haser R; Bejar S
    Res Microbiol; 2009 Dec; 160(10):775-84. PubMed ID: 19786095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event.
    Li BF; Holdup D; Morton CA; Sinnott ML
    Biochem J; 1989 May; 260(1):109-14. PubMed ID: 2505746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, purification, and characterization of β-galactosidase from Bacillus licheniformis DSM 13.
    Juajun O; Nguyen TH; Maischberger T; Iqbal S; Haltrich D; Yamabhai M
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):645-54. PubMed ID: 20852995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactose metabolism involving phospho-beta-galactosidase in Klebsiella.
    Hall BG
    J Bacteriol; 1979 Jun; 138(3):691-8. PubMed ID: 110764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of missense mutant beta-galactosidase proteins in Escherichia coli K-12.
    Bergquist PL; Truman P
    Mol Gen Genet; 1978 Aug; 164(1):105-8. PubMed ID: 100672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression of the beta-D-phosphogalactoside galactohydrolase gene of Lactobacillus casei in Escherichia coli K-12.
    Lee LJ; Hansen JB; Jagusztyn-Krynicka EK; Chassy BM
    J Bacteriol; 1982 Dec; 152(3):1138-46. PubMed ID: 6292163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an artificial bifunctional enzyme, beta-galactosidase/galactose dehydrogenase, exhibiting efficient galactose channeling.
    Ljungcrantz P; Carlsson H; Månsson MO; Buckel P; Mosbach K; Bülow L
    Biochemistry; 1989 Oct; 28(22):8786-92. PubMed ID: 2513881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.