These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23535767)
1. Chemical insight into electroforming of resistive switching manganite heterostructures. Borgatti F; Park C; Herpers A; Offi F; Egoavil R; Yamashita Y; Yang A; Kobata M; Kobayashi K; Verbeeck J; Panaccione G; Dittmann R Nanoscale; 2013 May; 5(9):3954-60. PubMed ID: 23535767 [TBL] [Abstract][Full Text] [Related]
2. Thin film deposition of metal oxides in resistance switching devices: electrode material dependence of resistance switching in manganite films. Nakamura T; Homma K; Tachibana K Nanoscale Res Lett; 2013 Feb; 8(1):76. PubMed ID: 23414549 [TBL] [Abstract][Full Text] [Related]
3. In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Baek K; Park S; Park J; Kim YM; Hwang H; Oh SH Nanoscale; 2017 Jan; 9(2):582-593. PubMed ID: 27886327 [TBL] [Abstract][Full Text] [Related]
4. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196 [TBL] [Abstract][Full Text] [Related]
5. Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition. Nakamura T; Homma K; Tachibana K J Nanosci Nanotechnol; 2011 Sep; 11(9):8408-11. PubMed ID: 22097594 [TBL] [Abstract][Full Text] [Related]
6. Electroforming-Free Bipolar Resistive Switching in GeSe Thin Films with a Ti-Containing Electrode. Kim W; Yoo C; Park ES; Ha M; Jeon JW; Kim GS; Woo KS; Lee YK; Hwang CS ACS Appl Mater Interfaces; 2019 Oct; 11(42):38910-38920. PubMed ID: 31550128 [TBL] [Abstract][Full Text] [Related]
7. Emerging memories: resistive switching mechanisms and current status. Jeong DS; Thomas R; Katiyar RS; Scott JF; Kohlstedt H; Petraru A; Hwang CS Rep Prog Phys; 2012 Jul; 75(7):076502. PubMed ID: 22790779 [TBL] [Abstract][Full Text] [Related]
8. Ferroelectric resistance switching in Pt/Fe/BiFeO Zheng W; Wang Y; Jin C; Yin R; Li D; Wang P; Liu S; Wang X; Zheng D; Bai H Phys Chem Chem Phys; 2020 Jun; 22(23):13277-13284. PubMed ID: 32500884 [TBL] [Abstract][Full Text] [Related]
9. Effect of Bilayer CeO Ismail M; Talib I; Rana AM; Akbar T; Jabeen S; Lee J; Kim S Nanoscale Res Lett; 2018 Oct; 13(1):318. PubMed ID: 30311009 [TBL] [Abstract][Full Text] [Related]
10. Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits. R RK; Kalaboukhov A; Weng YC; Rathod KN; Johansson T; Lindblad A; Kamalakar MV; Sarkar T ACS Appl Mater Interfaces; 2024 Apr; 16(15):19225-19234. PubMed ID: 38579143 [TBL] [Abstract][Full Text] [Related]
11. In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. Norpoth J; Mildner S; Scherff M; Hoffmann J; Jooss C Nanoscale; 2014 Aug; 6(16):9852-62. PubMed ID: 25029190 [TBL] [Abstract][Full Text] [Related]
12. Memristive behaviour of Si-Al oxynitride thin films: the role of oxygen and nitrogen vacancies in the electroforming process. Blázquez O; Martín G; Camps I; Mariscal A; López-Vidrier J; Ramírez JM; Hernández S; Estradé S; Peiró F; Serna R; Garrido B Nanotechnology; 2018 Jun; 29(23):235702. PubMed ID: 29547131 [TBL] [Abstract][Full Text] [Related]
13. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. You T; Ou X; Niu G; Bärwolf F; Li G; Du N; Bürger D; Skorupa I; Jia Q; Yu W; Wang X; Schmidt OG; Schmidt H Sci Rep; 2015 Dec; 5():18623. PubMed ID: 26692104 [TBL] [Abstract][Full Text] [Related]
14. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Li Y; Yuan P; Fu L; Li R; Gao X; Tao C Nanotechnology; 2015 Oct; 26(39):391001. PubMed ID: 26358828 [TBL] [Abstract][Full Text] [Related]
15. Low-power and controllable memory window in Pt/Pr0.7Ca0.3MnO3/yttria-stabilized zirconia/W resistive random-access memory devices. Liu X; Biju KP; Park J; Park S; Shin J; Kim I; Md Sadaf S; Hwang H J Nanosci Nanotechnol; 2012 Apr; 12(4):3252-5. PubMed ID: 22849099 [TBL] [Abstract][Full Text] [Related]
16. Manganite-based memristive heterojunction with tunable non-linear I-V characteristics. Lee HS; Park HH; Rozenberg MJ Nanoscale; 2015 Apr; 7(15):6444-50. PubMed ID: 25794166 [TBL] [Abstract][Full Text] [Related]
17. In situ observation of filamentary conducting channels in an asymmetric Ta₂O5-x/TaO2-x bilayer structure. Park GS; Kim YB; Park SY; Li XS; Heo S; Lee MJ; Chang M; Kwon JH; Kim M; Chung UI; Dittmann R; Waser R; Kim K Nat Commun; 2013; 4():2382. PubMed ID: 24008898 [TBL] [Abstract][Full Text] [Related]
18. Gradual electroforming and memristive switching in Pt/CuO(x)/Si/Pt systems. Wei LL; Shang DS; Sun JR; Lee SB; Sun ZG; Shen BG Nanotechnology; 2013 Aug; 24(32):325202. PubMed ID: 23867151 [TBL] [Abstract][Full Text] [Related]
19. Electroforming-Free Bipolar Resistive Switching Memory Based on Magnesium Fluoride. Das NC; Kim M; Rani JR; Hong SM; Jang JH Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577692 [TBL] [Abstract][Full Text] [Related]
20. Developing an in situ environmental TEM set up for investigations of resistive switching mechanisms in Pt-Pr Kramer T; Mierwaldt D; Scherff M; Kanbach M; Jooss C Ultramicroscopy; 2018 Jan; 184(Pt A):61-70. PubMed ID: 28850867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]