These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23536171)

  • 1. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks.
    Liang W; D'Alessandro DM
    Chem Commun (Camb); 2013 May; 49(35):3706-8. PubMed ID: 23536171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis.
    Ni Z; Masel RI
    J Am Chem Soc; 2006 Sep; 128(38):12394-5. PubMed ID: 16984171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal-organic frameworks.
    Liang W; Babarao R; D'Alessandro DM
    Inorg Chem; 2013 Nov; 52(22):12878-80. PubMed ID: 24168698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resin-assisted solvothermal synthesis of transition metal-organic frameworks.
    Du Y; Thompson AL; Russell N; O'Hare D
    Dalton Trans; 2010 Apr; 39(14):3384-95. PubMed ID: 20379531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted synthesis of metal-organic frameworks.
    Klinowski J; Paz FA; Silva P; Rocha J
    Dalton Trans; 2011 Jan; 40(2):321-30. PubMed ID: 20963251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly crystalline MOF-based materials grown on electrospun nanofibers.
    Bechelany M; Drobek M; Vallicari C; Abou Chaaya A; Julbe A; Miele P
    Nanoscale; 2015 Mar; 7(13):5794-802. PubMed ID: 25759092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-Flow Microwave Synthesis of Metal-Organic Frameworks: A Highly Efficient Method for Large-Scale Production.
    Taddei M; Steitz DA; van Bokhoven JA; Ranocchiari M
    Chemistry; 2016 Mar; 22(10):3245-3249. PubMed ID: 26756401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted synthesis of a series of lanthanide metal-organic frameworks and gas sorption properties.
    Lin ZJ; Yang Z; Liu TF; Huang YB; Cao R
    Inorg Chem; 2012 Feb; 51(3):1813-20. PubMed ID: 22220976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity.
    Wei H; Chai S; Hu N; Yang Z; Wei L; Wang L
    Chem Commun (Camb); 2015 Aug; 51(61):12178-81. PubMed ID: 26152822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resin-assisted solvothermal synthesis of metal-organic frameworks.
    Du Y; Thompson AL; O'Hare D
    Chem Commun (Camb); 2008 Dec; (45):5987-9. PubMed ID: 19030561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses.
    Khan NA; Haque E; Jhung SH
    Phys Chem Chem Phys; 2010 Mar; 12(11):2625-31. PubMed ID: 20200739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating.
    Lin Y; Baggett DW; Kim JW; Siochi EJ; Connell JW
    ACS Appl Mater Interfaces; 2011 May; 3(5):1652-64. PubMed ID: 21517032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system.
    Bauer S; Serre C; Devic T; Horcajada P; Marrot J; Férey G; Stock N
    Inorg Chem; 2008 Sep; 47(17):7568-76. PubMed ID: 18681423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions.
    Lin Z; Wragg DS; Morris RE
    Chem Commun (Camb); 2006 May; (19):2021-3. PubMed ID: 16767262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal.
    Zhao X; Qi L
    Nanotechnology; 2012 Jun; 23(23):235604. PubMed ID: 22595896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives.
    Zhang W; Qiu LG; Yuan YP; Xie AJ; Shen YH; Zhu JF
    J Hazard Mater; 2012 Jun; 221-222():147-54. PubMed ID: 22560174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-synthesis of carboxylate and phosphonate based metal-organic frameworks under non-solvothermal reaction conditions.
    Waitschat S; Wharmby MT; Stock N
    Dalton Trans; 2015 Jun; 44(24):11235-40. PubMed ID: 26007604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvothermal synthesis of nanocrystalline copper nitride from an energetically unstable copper azide precursor.
    Choi J; Gillan EG
    Inorg Chem; 2005 Oct; 44(21):7385-93. PubMed ID: 16212364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homochiral H-bonded proline based metal organic frameworks.
    Ingleson MJ; Bacsa J; Rosseinsky MJ
    Chem Commun (Camb); 2007 Aug; (29):3036-8. PubMed ID: 17639133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.