BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23536189)

  • 1. Interfacial microfluidic transport on micropatterned superhydrophobic textile.
    Xing S; Jiang J; Pan T
    Lab Chip; 2013 May; 13(10):1937-47. PubMed ID: 23536189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of microfluidic flow in amphiphilic fabrics.
    Owens TL; Leisen J; Beckham HW; Breedveld V
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3796-803. PubMed ID: 21942403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic superhydrophobic and highly oleophobic cotton textiles.
    Hoefnagels HF; Wu D; de With G; Ming W
    Langmuir; 2007 Dec; 23(26):13158-63. PubMed ID: 17985939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.
    Zhang M; Wang C
    Carbohydr Polym; 2013 Jul; 96(2):396-402. PubMed ID: 23768579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic antibacterial cotton textiles.
    Shateri Khalil-Abad M; Yazdanshenas ME
    J Colloid Interface Sci; 2010 Nov; 351(1):293-8. PubMed ID: 20709327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.
    Baby R; Mathur K; DenHartog E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4652-4664. PubMed ID: 33428371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-directed capillary system; theory, experiments and applications.
    Bouaidat S; Hansen O; Bruus H; Berendsen C; Bau-Madsen NK; Thomsen P; Wolff A; Jonsmann J
    Lab Chip; 2005 Aug; 5(8):827-36. PubMed ID: 16027933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward fabric-based flexible microfluidic devices: pointed surface modification for pH sensitive liquid transport.
    Vatansever F; Burtovyy R; Zdyrko B; Ramaratnam K; Andrukh T; Minko S; Owens JR; Kornev KG; Luzinov I
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4541-8. PubMed ID: 22873785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of cotton fabric with potential use in UV resistance and oil reclaim.
    Zhang M; Li J; Zang D; Lu Y; Gao Z; Shi J; Wang C
    Carbohydr Polym; 2016 Feb; 137():264-270. PubMed ID: 26686129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process.
    Wang K; Lu YC; Xu JH; Luo GS
    Langmuir; 2009 Feb; 25(4):2153-8. PubMed ID: 19152256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations.
    Safavieh R; Zhou GZ; Juncker D
    Lab Chip; 2011 Aug; 11(15):2618-24. PubMed ID: 21677945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic approach for rapid multicomponent interfacial tensiometry.
    Cabral JT; Hudson SD
    Lab Chip; 2006 Mar; 6(3):427-36. PubMed ID: 16511627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.