BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23536217)

  • 1. Biocontrol of postharvest Rhizopus decay of peaches with Pichia caribbica.
    Xu B; Zhang H; Chen K; Xu Q; Yao Y; Gao H
    Curr Microbiol; 2013 Aug; 67(2):255-61. PubMed ID: 23536217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches.
    Zhang H; Wang L; Zheng X; Dong Y
    Int J Food Microbiol; 2007 Apr; 115(1):53-8. PubMed ID: 17140691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest preservation of peach fruit.
    Zhao Y; Li Y; Yin J
    J Sci Food Agric; 2019 Jan; 99(2):647-655. PubMed ID: 29962027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of trehalose on the biocontrol efficacy of Pichia caribbica against post-harvest grey mould and blue mould decay of apples.
    Zhao L; Zhang H; Lin H; Zhang X; Ren X
    Pest Manag Sci; 2013 Aug; 69(8):983-9. PubMed ID: 23325746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples.
    Li C; Zhang H; Yang Q; Komla MG; Zhang X; Zhu S
    J Agric Food Chem; 2014 Jul; 62(30):7612-21. PubMed ID: 25029482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches.
    Zhou D; Wang Z; Li M; Xing M; Xian T; Tu K
    J Appl Microbiol; 2018 Jan; 124(1):166-178. PubMed ID: 29044849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological control of Monilinia laxa and Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism.
    Bonaterra A; Mari M; Casalini L; Montesinos E
    Int J Food Microbiol; 2003 Jul; 84(1):93-104. PubMed ID: 12781959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit.
    Wang X; Xu F; Wang J; Jin P; Zheng Y
    Food Chem; 2013 Jan; 136(2):400-6. PubMed ID: 23122077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples.
    Cao J; Zhang H; Yang Q; Ren R
    Int J Food Microbiol; 2013 Mar; 162(2):167-73. PubMed ID: 23416552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burdock fructooligosaccharide enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches.
    Zhang H; Liu Z; Xu B; Chen K; Yang Q; Zhang Q
    Carbohydr Polym; 2013 Oct; 98(1):366-71. PubMed ID: 23987356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Biocontrol Efficacy of Pichia kudriavzevii Induced by Ca Ascorbate against Botrytis cinerea in Cherry Tomato Fruit and the Possible Mechanisms of Action.
    Sun K; Wang Z; Zhang X; Wei Z; Zhang X; Li L; Fu Y; Gao J; Zhao X; Guo J; Wang J
    Microbiol Spectr; 2021 Dec; 9(3):e0150721. PubMed ID: 34937188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat treatment in combination with antagonistic yeast reduces diseases and elicits the active defense responses in harvested cherry tomato fruit.
    Zhao Y; Tu K; Su J; Tu S; Hou Y; Liu F; Zou X
    J Agric Food Chem; 2009 Aug; 57(16):7565-70. PubMed ID: 19637930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit.
    Wang X; Wang J; Jin P; Zheng Y
    Int J Food Microbiol; 2013 Jun; 164(2-3):141-7. PubMed ID: 23673059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action.
    Li R; Zhang H; Liu W; Zheng X
    Int J Food Microbiol; 2011 Mar; 146(2):151-6. PubMed ID: 21402429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the Fungal Pathogens of Postharvest Disease on Peach Fruits and the Control Mechanisms of
    Zhang S; Zheng Q; Xu B; Liu J
    Toxins (Basel); 2019 Jun; 11(6):. PubMed ID: 31195675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing oxidative stress in sweet cherry fruit by Pichia membranaefaciens: a possible mode of action against Penicillium expansum.
    Xu XB; Tian SP
    J Appl Microbiol; 2008 Oct; 105(4):1170-7. PubMed ID: 18492044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activity screening for mint and thyme essential oils against Rhizopus stolonifer and their application in postharvest preservation of strawberry and peach fruits.
    Yan J; Wu H; Shi F; Wang H; Chen K; Feng J; Jia W
    J Appl Microbiol; 2021 Jun; 130(6):1993-2007. PubMed ID: 33190384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of peach fungal pathogens by commercial products and indigenous yeasts.
    Restuccia C; Giusino F; Licciardello F; Randazzo C; Caggia C; Muratore G
    J Food Prot; 2006 Oct; 69(10):2465-70. PubMed ID: 17066929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postharvest Biological Control of Rhizopus Rot of Nectarine Fruits by Pichia membranefaciens.
    Qing F; Shiping T
    Plant Dis; 2000 Nov; 84(11):1212-1216. PubMed ID: 30832169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved.
    Yao HJ; Tian SP
    J Appl Microbiol; 2005; 98(4):941-50. PubMed ID: 15752341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.