These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23536301)

  • 1. Fly cryptochrome and the visual system.
    Mazzotta G; Rossi A; Leonardi E; Mason M; Bertolucci C; Caccin L; Spolaore B; Martin AJ; Schlichting M; Grebler R; Helfrich-Förster C; Mammi S; Costa R; Tosatto SC
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6163-8. PubMed ID: 23536301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calmodulin Enhances Cryptochrome Binding to INAD in
    Mazzotta GM; Bellanda M; Minervini G; Damulewicz M; Cusumano P; Aufiero S; Stefani M; Zambelli B; Mammi S; Costa R; Tosatto SCE
    Front Mol Neurosci; 2018; 11():280. PubMed ID: 30177872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY.
    Rosato E; Codd V; Mazzotta G; Piccin A; Zordan M; Costa R; Kyriacou CP
    Curr Biol; 2001 Jun; 11(12):909-17. PubMed ID: 11448767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear motifs in the C-terminus of D. melanogaster cryptochrome.
    Hemsley MJ; Mazzotta GM; Mason M; Dissel S; Toppo S; Pagano MA; Sandrelli F; Meggio F; Rosato E; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2007 Apr; 355(2):531-7. PubMed ID: 17306225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.
    Egan ES; Franklin TM; Hilderbrand-Chae MJ; McNeil GP; Roberts MA; Schroeder AJ; Zhang X; Jackson FR
    J Neurosci; 1999 May; 19(10):3665-73. PubMed ID: 10233998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox potential: differential roles in dCRY and mCRY1 functions.
    Froy O; Chang DC; Reppert SM
    Curr Biol; 2002 Jan; 12(2):147-52. PubMed ID: 11818067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-shifting the fruit fly clock without cryptochrome.
    Kistenpfennig C; Hirsh J; Yoshii T; Helfrich-Förster C
    J Biol Rhythms; 2012 Apr; 27(2):117-25. PubMed ID: 22476772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
    Berndt A; Kottke T; Breitkreuz H; Dvorsky R; Hennig S; Alexander M; Wolf E
    J Biol Chem; 2007 Apr; 282(17):13011-21. PubMed ID: 17298948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila.
    Popescu DC; Ham AJ; Shieh BH
    J Neurosci; 2006 Aug; 26(33):8570-7. PubMed ID: 16914683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells.
    Li HS; Montell C
    J Cell Biol; 2000 Sep; 150(6):1411-22. PubMed ID: 10995445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct mechanisms of
    Baik LS; Au DD; Nave C; Foden AJ; Enrriquez-Villalva WK; Holmes TC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23339-23344. PubMed ID: 31659046
    [No Abstract]   [Full Text] [Related]  

  • 16. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.
    Yoshii T; Ahmad M; Helfrich-Förster C
    PLoS Biol; 2009 Apr; 7(4):e1000086. PubMed ID: 19355790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of cryptochromes and photolyases for insect life under sunlight.
    Deppisch P; Kirsch V; Helfrich-Förster C; Senthilan PR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):373-389. PubMed ID: 36609567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.