These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 23536523)
21. A Reaction-Induced Localization of Spin Density Enables Thermal C-H Bond Activation of Methane by Pristine FeC Geng C; Li J; Weiske T; Schwarz H Chemistry; 2019 Oct; 25(56):12940-12945. PubMed ID: 31268193 [TBL] [Abstract][Full Text] [Related]
22. Thermal Methane Activation by [Si Sun X; Zhou S; Schlangen M; Schwarz H Angew Chem Int Ed Engl; 2016 Oct; 55(42):13345-13348. PubMed ID: 27650136 [TBL] [Abstract][Full Text] [Related]
23. Matrix isolation infrared spectroscopic and theoretical studies on the reactions of niobium and tantalum mono- and dioxides with methane. Wang G; Lai S; Chen M; Zhou M J Phys Chem A; 2005 Oct; 109(42):9514-20. PubMed ID: 16866402 [TBL] [Abstract][Full Text] [Related]
24. Effects of substituent and leaving group on the gas-phase SN2 reactions of phenoxides with halomethanes: a DFT investigation. Li QG; Xue Y J Phys Chem A; 2009 Sep; 113(38):10359-66. PubMed ID: 19711938 [TBL] [Abstract][Full Text] [Related]
25. On the role of the electronic structure of the heteronuclear oxide cluster [Ga2Mg2O5 ](.+) in the thermal activation of methane and ethane: an unusual doping effect. Li J; Wu XN; Schlangen M; Zhou S; González-Navarrete P; Tang S; Schwarz H Angew Chem Int Ed Engl; 2015 Apr; 54(17):5074-8. PubMed ID: 25728585 [TBL] [Abstract][Full Text] [Related]
26. Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. Olah GA; Prakash GK; Goeppert A; Czaun M; Mathew T J Am Chem Soc; 2013 Jul; 135(27):10030-1. PubMed ID: 23795911 [TBL] [Abstract][Full Text] [Related]
27. Distinct mechanistic differences in the hydrogen-atom transfer from methane and water by the heteronuclear oxide cluster [Ga2 MgO4](.). Li J; Wu XN; Zhou S; Tang S; Schlangen M; Schwarz H Angew Chem Int Ed Engl; 2015 Oct; 54(42):12298-302. PubMed ID: 26136380 [TBL] [Abstract][Full Text] [Related]
28. Water reactivity with tungsten oxides: H(2) production and kinetic traps. Mayhall NJ; Rothgeb DW; Hossain E; Jarrold CC; Raghavachari K J Chem Phys; 2009 Oct; 131(14):144302. PubMed ID: 19831436 [TBL] [Abstract][Full Text] [Related]
29. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes. Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646 [TBL] [Abstract][Full Text] [Related]
30. Methane activation by metal-free radical cations: experimental insight into the reaction intermediate. de Petris G; Troiani A; Rosi M; Angelini G; Ursini O Chemistry; 2009; 15(17):4248-52. PubMed ID: 19291717 [TBL] [Abstract][Full Text] [Related]
31. Silicon carbide formation from methane and silicon monoxide. Aarnæs TS; Ringdalen E; Tangstad M Sci Rep; 2020 Dec; 10(1):21831. PubMed ID: 33311573 [TBL] [Abstract][Full Text] [Related]
32. The Unique Gas-Phase Chemistry of the [AuO](+) /CH4 Couple: Selective Oxygen-Atom Transfer to, Rather than Hydrogen-Atom Abstraction from, Methane. Zhou S; Li J; Schlangen M; Schwarz H Angew Chem Int Ed Engl; 2016 Aug; 55(36):10877-80. PubMed ID: 27390885 [TBL] [Abstract][Full Text] [Related]
33. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review. Bourikas K; Kordulis C; Vakros J; Lycourghiotis A Adv Colloid Interface Sci; 2004 Aug; 110(3):97-120. PubMed ID: 15328060 [TBL] [Abstract][Full Text] [Related]
34. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis. Randolph KL; Dean AM Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473 [TBL] [Abstract][Full Text] [Related]
35. Experimental study of methane replacement in gas hydrate by carbon dioxide. Voronov VP; Gorodetskii EE; Muratov AR J Phys Chem B; 2010 Sep; 114(38):12314-8. PubMed ID: 20822123 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic detection and theoretical confirmation of the role of Cr2(CO)5(C5R5)2 and .Cr(CO)2(ketene)(C5R5) as intermediates in carbonylation of N=N=CHSiMe3 to O=C=CHSiMe3 by .Cr(CO)3(C5R5) (R = H, CH3). Fortman GC; Kégl T; Li QS; Zhang X; Schaefer HF; Xie Y; King RB; Telser J; Hoff CD J Am Chem Soc; 2007 Nov; 129(46):14388-400. PubMed ID: 17960906 [TBL] [Abstract][Full Text] [Related]
37. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices. Kaiser RI; Maity S; Jones BM Phys Chem Chem Phys; 2014 Feb; 16(8):3399-424. PubMed ID: 24322733 [TBL] [Abstract][Full Text] [Related]
38. Methane activation by chromium oxide cations in the gas phase: a theoretical study. Rivalta I; Russo N; Sicilia E J Comput Chem; 2006 Jan; 27(2):174-87. PubMed ID: 16323159 [TBL] [Abstract][Full Text] [Related]
39. Quantum chemical study of the catalytic activation of methane by copper oxide and copper hydroxide cations. Rezabal E; Ruipérez F; Ugalde JM Phys Chem Chem Phys; 2013 Jan; 15(4):1148-53. PubMed ID: 23223551 [TBL] [Abstract][Full Text] [Related]
40. Gas permeation in a molecular crystal and space expansion. Takasaki Y; Takamizawa S J Am Chem Soc; 2014 May; 136(19):6806-9. PubMed ID: 24786515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]