These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2353654)

  • 21. Adrenocortical responses to maximal exercise in moderate-altitude natives at 447 Torr.
    Maresh CM; Noble BJ; Robertson KL; Seip RL
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Feb; 56(2):482-8. PubMed ID: 6706759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude.
    Gale GE; Torre-Bueno JR; Moon RE; Saltzman HA; Wagner PD
    J Appl Physiol (1985); 1985 Mar; 58(3):978-88. PubMed ID: 2984168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polygraphy of sleep at altitudes between 5300 m and 7500 m during an expedition to Mt. Everest (MedEx 2006).
    Mees K; de la Chaux R
    Wilderness Environ Med; 2009; 20(2):161-5. PubMed ID: 19594205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II.
    Wagner PD; Wagner HE; Groves BM; Cymerman A; Houston CS
    High Alt Med Biol; 2007; 8(1):32-42. PubMed ID: 17394415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Barometric pressures at extreme altitudes on Mt. Everest: physiological significance.
    West JB; Lahiri S; Maret KH; Peters RM; Pizzo CJ
    J Appl Physiol Respir Environ Exerc Physiol; 1983 May; 54(5):1188-94. PubMed ID: 6863078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen transport during exercise at extreme altitude: Operation Everest II.
    Reeves JT; Groves BM; Sutton JR; Wagner PD; Cymerman A; Malconian MK; Rock PB; Young PM; Alexander JK; Houston CS
    Ann Emerg Med; 1987 Sep; 16(9):993-8. PubMed ID: 3115154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Operation Everest II.
    Wagner PD
    High Alt Med Biol; 2010; 11(2):111-9. PubMed ID: 20586595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship of hypoxic ventilatory response to exercise performance on Mount Everest.
    Schoene RB; Lahiri S; Hackett PH; Peters RM; Milledge JS; Pizzo CJ; Sarnquist FH; Boyer SJ; Graber DJ; Maret KH
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jun; 56(6):1478-83. PubMed ID: 6735806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Operation Everest II: coagulation system during prolonged decompression to 282 Torr.
    Andrew M; O'Brodovich H; Sutton J
    J Appl Physiol (1985); 1987 Sep; 63(3):1262-7. PubMed ID: 3115952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events.
    Caquelard F; Burnet H; Tagliarini F; Cauchy E; Richalet JP; Jammes Y
    Clin Sci (Lond); 2000 Mar; 98(3):329-37. PubMed ID: 10677392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulmonary gas exchange on the summit of Mount Everest.
    West JB; Hackett PH; Maret KH; Milledge JS; Peters RM; Pizzo CJ; Winslow RM
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Sep; 55(3):678-87. PubMed ID: 6415007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Operation Everest III (Comex '97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study.
    Boussuges A; Molenat F; Burnet H; Cauchy E; Gardette B; Sainty JM; Jammes Y; Richalet JP
    Am J Respir Crit Care Med; 2000 Jan; 161(1):264-70. PubMed ID: 10619830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pulmonary pressure, cardiac output, and arterial oxygen saturation during exercise at high altitude and at sea level.
    Banchero N; Sime F; PeƱaloza D; Cruz J; Gamboa R; Marticorena E
    Circulation; 1966 Feb; 33(2):249-62. PubMed ID: 25823098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion at high altitude.
    West JB
    Fed Proc; 1982 Apr; 41(6):2128-30. PubMed ID: 7075784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude.
    Garner SH; Sutton JR; Burse RL; McComas AJ; Cymerman A; Houston CS
    J Appl Physiol (1985); 1990 Mar; 68(3):1167-72. PubMed ID: 2341341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operation Everest II: man at extreme altitude.
    Houston CS; Sutton JR; Cymerman A; Reeves JT
    J Appl Physiol (1985); 1987 Aug; 63(2):877-82. PubMed ID: 3654448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red cell function at extreme altitude on Mount Everest.
    Winslow RM; Samaja M; West JB
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):109-16. PubMed ID: 6693310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Investigations on the cardiovascular system at altitudes up to a height of 7,800 meters (author's transl)].
    Aigner A; Berghold F; Muss N
    Z Kardiol; 1980 Sep; 69(9):604-10. PubMed ID: 7210767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diffusion limitation in normal humans during exercise at sea level and simulated altitude.
    Torre-Bueno JR; Wagner PD; Saltzman HA; Gale GE; Moon RE
    J Appl Physiol (1985); 1985 Mar; 58(3):989-95. PubMed ID: 2984169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Operation Everest II: metabolic and hormonal responses to incremental exercise to exhaustion.
    Young PM; Sutton JR; Green HJ; Reeves JT; Rock PB; Houston CS; Cymerman A
    J Appl Physiol (1985); 1992 Dec; 73(6):2574-9. PubMed ID: 1490971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.