BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 23536589)

  • 21. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) Larvae exposed to subsequent salinity stress.
    Miller SH; Zarate S; Smith EH; Gaylord B; Hosfelt JD; Hill TM
    PLoS One; 2014; 9(10):e109167. PubMed ID: 25295878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical adaptation to ocean acidification.
    Stillman JH; Paganini AW
    J Exp Biol; 2015 Jun; 218(Pt 12):1946-55. PubMed ID: 26085671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition.
    Bogan SN; McMahon JB; Pechenik JA; Pires A
    Biol Bull; 2019 Jun; 236(3):159-173. PubMed ID: 31167086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sand smelt ability to cope and recover from ocean's elevated CO
    Silva CSE; Lemos MFL; Faria AM; Lopes AF; Mendes S; Gonçalves EJ; Novais SC
    Ecotoxicol Environ Saf; 2018 Jun; 154():302-310. PubMed ID: 29477920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis).
    Bechmann RK; Taban IC; Westerlund S; Godal BF; Arnberg M; Vingen S; Ingvarsdottir A; Baussant T
    J Toxicol Environ Health A; 2011; 74(7-9):424-38. PubMed ID: 21391089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.
    Johnson KM; Hofmann GE
    BMC Genomics; 2017 Oct; 18(1):812. PubMed ID: 29061120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intertidal oysters reach their physiological limit in a future high-CO
    Scanes E; Parker LM; O'Connor WA; Stapp LS; Ross PM
    J Exp Biol; 2017 Mar; 220(Pt 5):765-774. PubMed ID: 28250175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional impacts of ocean acidification in an ecologically critical foundation species.
    Gaylord B; Hill TM; Sanford E; Lenz EA; Jacobs LA; Sato KN; Russell AD; Hettinger A
    J Exp Biol; 2011 Aug; 214(Pt 15):2586-94. PubMed ID: 21753053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO
    Lee HG; Stumpp M; Yan JJ; Tseng YC; Heinzel S; Hu MY
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistence of Positive Carryover Effects in the Oyster, Saccostrea glomerata, following Transgenerational Exposure to Ocean Acidification.
    Parker LM; O'Connor WA; Raftos DA; Pörtner HO; Ross PM
    PLoS One; 2015; 10(7):e0132276. PubMed ID: 26147612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).
    Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D
    J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification.
    Lim YK; Dang X; Thiyagarajan V
    Sci Total Environ; 2021 Aug; 782():146704. PubMed ID: 33848868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater.
    Davis BE; Miller NA; Flynn EE; Todgham AE
    J Exp Biol; 2016 Apr; 219(Pt 8):1203-13. PubMed ID: 26944503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Food web changes under ocean acidification promote herring larvae survival.
    Sswat M; Stiasny MH; Taucher J; Algueró-Muñiz M; Bach LT; Jutfelt F; Riebesell U; Clemmesen C
    Nat Ecol Evol; 2018 May; 2(5):836-840. PubMed ID: 29556079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper and ocean acidification interact to lower maternal investment, but have little effect on adult physiology of the Sydney rock oyster Saccostrea glomerata.
    Scanes E; Parker LM; O'Connor WA; Gibbs MC; Ross PM
    Aquat Toxicol; 2018 Oct; 203():51-60. PubMed ID: 30077126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of one-year exposure to ocean acidification on two species of abalone.
    Guo X; Huang M; Luo X; You W; Ke C
    Sci Total Environ; 2022 Dec; 852():158144. PubMed ID: 35988613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energetic lipid responses of larval oysters to ocean acidification.
    Gibbs MC; Parker LM; Scanes E; Byrne M; O'Connor WA; Ross PM
    Mar Pollut Bull; 2021 Jul; 168():112441. PubMed ID: 33991985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish.
    Watson SA; Allan BJM; McQueen DE; Nicol S; Parsons DM; Pether SMJ; Pope S; Setiawan AN; Smith N; Wilson C; Munday PL
    Glob Chang Biol; 2018 Sep; 24(9):4368-4385. PubMed ID: 29790239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.