BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23536659)

  • 1. Guanine-nucleotide exchange factor RCC1 facilitates a tight binding between the encephalomyocarditis virus leader and cellular Ran GTPase.
    Petty RV; Palmenberg AC
    J Virol; 2013 Jun; 87(11):6517-20. PubMed ID: 23536659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1).
    Renault L; Kuhlmann J; Henkel A; Wittinghofer A
    Cell; 2001 Apr; 105(2):245-55. PubMed ID: 11336674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.
    Cekan P; Hasegawa K; Pan Y; Tubman E; Odde D; Chen JQ; Herrmann MA; Kumar S; Kalab P
    Mol Biol Cell; 2016 Apr; 27(8):1346-57. PubMed ID: 26864624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase.
    Bacot-Davis VR; Palmenberg AC
    Virology; 2013 Aug; 443(1):177-85. PubMed ID: 23711384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1.
    Hao Y; Macara IG
    J Cell Biol; 2008 Sep; 182(5):827-36. PubMed ID: 18762580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells.
    Hitakomate E; Hood FE; Sanderson HS; Clarke PR
    BMC Cell Biol; 2010 Jun; 11():43. PubMed ID: 20565941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle-dependent binding modes of the ran exchange factor RCC1 to chromatin.
    Bierbaum M; Bastiaens PI
    Biophys J; 2013 Apr; 104(8):1642-51. PubMed ID: 23601311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RanBP1 controls the Ran pathway in mammalian cells through regulation of mitotic RCC1 dynamics.
    Yau KC; Arnaoutov A; Aksenova V; Kaufhold R; Chen S; Dasso M
    Cell Cycle; 2020 Aug; 19(15):1899-1916. PubMed ID: 32594833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XMog1, a nuclear ran-binding protein in Xenopus, is a functional homologue of Schizosaccharomyces pombe mog1p that co-operates with RanBP1 to control generation of Ran-GTP.
    Nicolás FJ; Moore WJ; Zhang C; Clarke PR
    J Cell Sci; 2001 Aug; 114(Pt 16):3013-23. PubMed ID: 11686304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A T42A Ran mutation: differential interactions with effectors and regulators, and defect in nuclear protein import.
    Murphy GA; Moore MS; Drivas G; Pérez de la Ossa P; Villamarin A; D'Eustachio P; Rush MG
    Mol Biol Cell; 1997 Dec; 8(12):2591-604. PubMed ID: 9398678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ran-binding protein 3 links Crm1 to the Ran guanine nucleotide exchange factor.
    Nemergut ME; Lindsay ME; Brownawell AM; Macara IG
    J Biol Chem; 2002 May; 277(20):17385-8. PubMed ID: 11932251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitosis-specific acetylation tunes Ran effector binding for chromosome segregation.
    Bao X; Liu H; Liu X; Ruan K; Zhang Y; Zhang Z; Hu Q; Liu Y; Akram S; Zhang J; Gong Q; Wang W; Yuan X; Li J; Zhao L; Dou Z; Tian R; Yao X; Wu J; Shi Y
    J Mol Cell Biol; 2018 Feb; 10(1):18-32. PubMed ID: 29040603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis.
    Chen T; Muratore TL; Schaner-Tooley CE; Shabanowitz J; Hunt DF; Macara IG
    Nat Cell Biol; 2007 May; 9(5):596-603. PubMed ID: 17435751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and function of bacterial RCC1 repeat effectors.
    Swart AL; Gomez-Valero L; Buchrieser C; Hilbi H
    Cell Microbiol; 2020 Oct; 22(10):e13246. PubMed ID: 32720355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the ran system by cysteine oxidation of the nucleotide exchange factor RCC1.
    Chatterjee M; Paschal BM
    Mol Cell Biol; 2015 Feb; 35(3):566-81. PubMed ID: 25452301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1.
    Klebe C; Bischoff FR; Ponstingl H; Wittinghofer A
    Biochemistry; 1995 Jan; 34(2):639-47. PubMed ID: 7819259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic mechanism of Ran--nucleotide exchange catalyzed by RCC1.
    Klebe C; Prinz H; Wittinghofer A; Goody RS
    Biochemistry; 1995 Oct; 34(39):12543-52. PubMed ID: 7548002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities.
    Sanz-García M; López-Sánchez I; Lazo PA
    Mol Cell Proteomics; 2008 Nov; 7(11):2199-214. PubMed ID: 18617507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mammalian Mog1 protein is a guanine nucleotide release factor for Ran.
    Steggerda SM; Paschal BM
    J Biol Chem; 2000 Jul; 275(30):23175-80. PubMed ID: 10811801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent Evolution of
    Swart AL; Steiner B; Gomez-Valero L; Schütz S; Hannemann M; Janning P; Irminger M; Rothmeier E; Buchrieser C; Itzen A; Panse VG; Hilbi H
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209684
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.