These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23536826)

  • 1. The properties of genome conformation and spatial gene interaction and regulation networks of normal and malignant human cell types.
    Wang Z; Cao R; Taylor K; Briley A; Caldwell C; Cheng J
    PLoS One; 2013; 8(3):e58793. PubMed ID: 23536826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the association between gene function and spatial gene-gene interactions in 3D human genome conformation.
    Cao R; Cheng J
    BMC Genomics; 2015 Oct; 16():880. PubMed ID: 26511362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The corrected gene proximity map for analyzing the 3D genome organization using Hi-C data.
    Ye C; Paccanaro A; Gerstein M; Yan KK
    BMC Bioinformatics; 2020 May; 21(1):222. PubMed ID: 32471347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.
    Engreitz JM; Agarwala V; Mirny LA
    PLoS One; 2012; 7(9):e44196. PubMed ID: 23028501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors.
    Ma X; Ezer D; Adryan B; Stevens TJ
    Genome Biol; 2018 Oct; 19(1):174. PubMed ID: 30359306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hi-C: a comprehensive technique to capture the conformation of genomes.
    Belton JM; McCord RP; Gibcus JH; Naumova N; Zhan Y; Dekker J
    Methods; 2012 Nov; 58(3):268-76. PubMed ID: 22652625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring spatially adjacent TFBS-clustered regions with Hi-C data.
    Chen H; Jiang S; Zhang Z; Li H; Lu Y; Bo X
    Bioinformatics; 2017 Sep; 33(17):2611-2614. PubMed ID: 28472433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing and Analysis of Hi-C Data on Bacteria.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():19-31. PubMed ID: 30109603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.
    Dekker J; Marti-Renom MA; Mirny LA
    Nat Rev Genet; 2013 Jun; 14(6):390-403. PubMed ID: 23657480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hitchhiker's guide to Hi-C analysis: practical guidelines.
    Lajoie BR; Dekker J; Kaplan N
    Methods; 2015 Jan; 72():65-75. PubMed ID: 25448293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleome Analysis Reveals Structure-Function Relationships for Colon Cancer.
    Seaman L; Chen H; Brown M; Wangsa D; Patterson G; Camps J; Omenn GS; Ried T; Rajapakse I
    Mol Cancer Res; 2017 Jul; 15(7):821-830. PubMed ID: 28258094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C.
    Mifsud B; Tavares-Cadete F; Young AN; Sugar R; Schoenfelder S; Ferreira L; Wingett SW; Andrews S; Grey W; Ewels PA; Herman B; Happe S; Higgs A; LeProust E; Follows GA; Fraser P; Luscombe NM; Osborne CS
    Nat Genet; 2015 Jun; 47(6):598-606. PubMed ID: 25938943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data.
    Wang S; Lee S; Chu C; Jain D; Kerpedjiev P; Nelson GM; Walsh JM; Alver BH; Park PJ
    Genome Biol; 2020 Mar; 21(1):73. PubMed ID: 32293513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.