These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23536826)

  • 21. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations.
    Merelli I; Liò P; Milanesi L
    PLoS One; 2013; 8(9):e75146. PubMed ID: 24069388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromosomal Translocations Detection in Cancer Cells Using Chromosomal Conformation Capture Data.
    Adeel MM; Rehman K; Zhang Y; Arega Y; Li G
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel insights into chromosomal conformations in cancer.
    Jia R; Chai P; Zhang H; Fan X
    Mol Cancer; 2017 Nov; 16(1):173. PubMed ID: 29149895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional Hubs Within Cliques in Ensemble Hi-C Chromatin Interaction Networks.
    Melkus G; Sizovs A; Rucevskis P; Silina S
    J Comput Biol; 2024 Jun; 31(6):589-596. PubMed ID: 38768423
    [No Abstract]   [Full Text] [Related]  

  • 30. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C.
    Kolovos P; Brouwer RWW; Kockx CEM; Lesnussa M; Kepper N; Zuin J; Imam AMA; van de Werken HJG; Wendt KS; Knoch TA; van IJcken WFJ; Grosveld F
    Nat Protoc; 2018 Mar; 13(3):459-477. PubMed ID: 29419817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
    Xu K; Jin L; Xiong M
    BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles.
    Miura H; Poonperm R; Takahashi S; Hiratani I
    Methods Mol Biol; 2018; 1861():221-245. PubMed ID: 30218370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
    Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP
    PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites.
    Burrow AA; Williams LE; Pierce LC; Wang YH
    BMC Genomics; 2009 Jan; 10():59. PubMed ID: 19183484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data.
    Chen BS; Li CW
    BMC Syst Biol; 2016 Feb; 10():18. PubMed ID: 26897165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale.
    Downes DJ; Beagrie RA; Gosden ME; Telenius J; Carpenter SJ; Nussbaum L; De Ornellas S; Sergeant M; Eijsbouts CQ; Schwessinger R; Kerry J; Roberts N; Shivalingam A; El-Sagheer A; Oudelaar AM; Brown T; Buckle VJ; Davies JOJ; Hughes JR
    Nat Commun; 2021 Jan; 12(1):531. PubMed ID: 33483495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.