These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23536898)

  • 1. Activation energy of extracellular enzymes in soils from different biomes.
    Steinweg JM; Jagadamma S; Frerichs J; Mayes MA
    PLoS One; 2013; 8(3):e59943. PubMed ID: 23536898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic efficiency of soil enzymes explains temperature sensitivity: Insights from physiological theory.
    Liu C; Tian H; Gu X; Li N; Zhao X; Lei M; Alharbi H; Megharaj M; He W; Kuzyakov Y
    Sci Total Environ; 2022 May; 822():153365. PubMed ID: 35077802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.
    Turner BL
    Appl Environ Microbiol; 2010 Oct; 76(19):6485-93. PubMed ID: 20709838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.
    Woo HL; Hazen TC; Simmons BA; DeAngelis KM
    Syst Appl Microbiol; 2014 Feb; 37(1):60-7. PubMed ID: 24238986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes.
    Moreno B; Vivas A; Nogales R; Macci C; Masciandaro G; Benitez E
    Environ Sci Pollut Res Int; 2009 May; 16(3):253-64. PubMed ID: 18751749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming.
    Alvarez G; Shahzad T; Andanson L; Bahn M; Wallenstein MD; Fontaine S
    Glob Chang Biol; 2018 Sep; 24(9):4238-4250. PubMed ID: 29682861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China.
    Feng J; Xu X; Wu J; Zhang Q; Zhang D; Li Q; Long C; Chen Q; Chen J; Cheng X
    Sci Total Environ; 2018 Nov; 640-641():653-661. PubMed ID: 29870941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of graphene oxides on soil enzyme activity and microbial biomass.
    Chung H; Kim MJ; Ko K; Kim JH; Kwon HA; Hong I; Park N; Lee SW; Kim W
    Sci Total Environ; 2015 May; 514():307-13. PubMed ID: 25668283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of forest conversion on carbon-degrading enzyme activities in subtropical China.
    Luo X; Hou E; Zhang L; Zang X; Yi Y; Zhang G; Wen D
    Sci Total Environ; 2019 Dec; 696():133968. PubMed ID: 31470332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils.
    Han J; Jung J; Hyun S; Park H; Park W
    J Microbiol; 2012 Dec; 50(6):916-24. PubMed ID: 23274977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
    Weedon JT; Aerts R; Kowalchuk GA; van Bodegom PM
    Biochem Soc Trans; 2011 Jan; 39(1):309-14. PubMed ID: 21265794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction effects of elevated CO₂ and temperature on microbial biomass and enzyme activities in tropical rice soils.
    Das S; Bhattacharyya P; Adhya TK
    Environ Monit Assess; 2011 Nov; 182(1-4):555-69. PubMed ID: 21340550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global meta-analysis on the responses of soil extracellular enzyme activities to warming.
    Meng C; Tian D; Zeng H; Li Z; Chen HYH; Niu S
    Sci Total Environ; 2020 Feb; 705():135992. PubMed ID: 31841928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls.
    Pastor A; Freixa A; Skovsholt LJ; Wu N; Romaní AM; Riis T
    Microb Ecol; 2019 Oct; 78(3):539-554. PubMed ID: 30739147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.
    Zeglin LH; Bottomley PJ; Jumpponen A; Rice CW; Arango M; Lindsley A; McGowan A; Mfombep P; Myrold DD
    Ecology; 2013 Oct; 94(10):2334-45. PubMed ID: 24358718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils.
    Kim H; Kang H
    J Microbiol; 2011 Jun; 49(3):369-75. PubMed ID: 21717320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils.
    Gallo M; Amonette R; Lauber C; Sinsabaugh RL; Zak DR
    Microb Ecol; 2004 Aug; 48(2):218-29. PubMed ID: 15546042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.
    Resat H; Bailey V; McCue LA; Konopka A
    Microb Ecol; 2012 May; 63(4):883-97. PubMed ID: 22193925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.