These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Understanding and Editing the Zebrafish Genome. Varshney GK; Sood R; Burgess SM Adv Genet; 2015; 92():1-52. PubMed ID: 26639914 [TBL] [Abstract][Full Text] [Related]
3. Origins of Programmable Nucleases for Genome Engineering. Chandrasegaran S; Carroll D J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267 [TBL] [Abstract][Full Text] [Related]
4. Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome. Auer TO; Del Bene F Methods Mol Biol; 2016; 1451():31-51. PubMed ID: 27464799 [TBL] [Abstract][Full Text] [Related]
5. Knock-In Strategy for Editing Human and Zebrafish Mitochondrial DNA Using Mito-CRISPR/Cas9 System. Bian WP; Chen YL; Luo JJ; Wang C; Xie SL; Pei DS ACS Synth Biol; 2019 Apr; 8(4):621-632. PubMed ID: 30955321 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related]
7. Plant genome engineering in full bloom. Lozano-Juste J; Cutler SR Trends Plant Sci; 2014 May; 19(5):284-7. PubMed ID: 24674878 [TBL] [Abstract][Full Text] [Related]
9. The CRISPR/Cas9 system for plant genome editing and beyond. Bortesi L; Fischer R Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441 [TBL] [Abstract][Full Text] [Related]
10. A TALE of two nucleases: gene targeting for the masses? Clark KJ; Voytas DF; Ekker SC Zebrafish; 2011 Sep; 8(3):147-9. PubMed ID: 21929364 [TBL] [Abstract][Full Text] [Related]
11. Genome Editing in Human Cells Using CRISPR/Cas Nucleases. Wyvekens N; Tsai SQ; Joung JK Curr Protoc Mol Biol; 2015 Oct; 112():31.3.1-31.3.18. PubMed ID: 26423589 [TBL] [Abstract][Full Text] [Related]
12. [TALE nuclease engineering and targeted genome modification]. Shen Y; Xiao A; Huang P; Wang WY; Zhu ZY; Zhang B Yi Chuan; 2013 Apr; 35(4):395-409. PubMed ID: 23659930 [TBL] [Abstract][Full Text] [Related]
13. Construction and application of site-specific artificial nucleases for targeted gene editing. Kok FO; Gupta A; Lawson ND; Wolfe SA Methods Mol Biol; 2014; 1101():267-303. PubMed ID: 24233786 [TBL] [Abstract][Full Text] [Related]
14. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants]. Ma XL; Liu YG Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775 [TBL] [Abstract][Full Text] [Related]
16. In vivo genome editing using a high-efficiency TALEN system. Bedell VM; Wang Y; Campbell JM; Poshusta TL; Starker CG; Krug RG; Tan W; Penheiter SG; Ma AC; Leung AY; Fahrenkrug SC; Carlson DF; Voytas DF; Clark KJ; Essner JJ; Ekker SC Nature; 2012 Nov; 491(7422):114-8. PubMed ID: 23000899 [TBL] [Abstract][Full Text] [Related]
17. Genome Editing and Its Applications in Model Organisms. Ma D; Liu F Genomics Proteomics Bioinformatics; 2015 Dec; 13(6):336-44. PubMed ID: 26762955 [TBL] [Abstract][Full Text] [Related]
18. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). Foley JE; Yeh JR; Maeder ML; Reyon D; Sander JD; Peterson RT; Joung JK PLoS One; 2009; 4(2):e4348. PubMed ID: 19198653 [TBL] [Abstract][Full Text] [Related]
19. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs. Sood R; Carrington B; Bishop K; Jones M; Rissone A; Candotti F; Chandrasekharappa SC; Liu P PLoS One; 2013; 8(2):e57239. PubMed ID: 23451191 [TBL] [Abstract][Full Text] [Related]
20. Basics of genome editing technology and its application in livestock species. Petersen B Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]