These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 23537005)

  • 21. Bioaccumulation, distribution and metabolism of BDE-153 in the freshwater fish Carassius auratus after dietary exposure.
    Zhang F; Lu G; Liu J; Yan Z; Zhang Z
    Ecotoxicol Environ Saf; 2014 Oct; 108():16-22. PubMed ID: 25038267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47).
    Hamers T; Kamstra JH; Sonneveld E; Murk AJ; Visser TJ; Van Velzen MJ; Brouwer A; Bergman A
    Mol Nutr Food Res; 2008 Feb; 52(2):284-98. PubMed ID: 18161906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of the parent compound and its metabolites in serum, urine, and feces of mice administered 2,2',4,4'-tetrabromodiphenyl ether.
    Xu H; Feng C; Cao Y; Lu Y; Xi J; Ji J; Lu D; Zhang XY; Luan Y
    Chemosphere; 2019 Jun; 225():217-225. PubMed ID: 30877916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human liver microsome-mediated metabolism of brominated diphenyl ethers 47, 99, and 153 and identification of their major metabolites.
    Lupton SJ; McGarrigle BP; Olson JR; Wood TD; Aga DS
    Chem Res Toxicol; 2009 Nov; 22(11):1802-9. PubMed ID: 19835403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of hydroxylated polybrominated diphenyl ether metabolites by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry.
    Lupton SJ; McGarrigle BP; Olson JR; Wood TD; Aga DS
    Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2227-35. PubMed ID: 20623478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2009 Sep; 37(9):1938-47. PubMed ID: 19487251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and tentative identification of novel polybrominated diphenyl ether metabolites in human blood.
    Rydén A; Nestor G; Jakobsson K; Marsh G
    Chemosphere; 2012 Aug; 88(10):1227-34. PubMed ID: 22572169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2008 Oct; 36(10):1983-91. PubMed ID: 18583509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationships between polybrominated diphenyl ethers and transcription and activity of type 1 deiodinase in a gull highly exposed to flame retardants.
    François A; Técher R; Houde M; Spear P; Verreault J
    Environ Toxicol Chem; 2016 Sep; 35(9):2215-22. PubMed ID: 27336952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-species comparison of the mechanism of biotransformation of MeO-BDEs to OH-BDEs in fish.
    Liu F; Wiseman S; Wan Y; Doering JA; Hecker M; Lam MH; Giesy JP
    Aquat Toxicol; 2012 Jun; 114-115():182-8. PubMed ID: 22446830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention of polybrominated diphenyl ethers and hydroxylated metabolites in paired human serum and milk in relation to CYP2B6 genotype.
    Butryn DM; Chi LH; Gross MS; McGarrigle B; Schecter A; Olson JR; Aga DS
    J Hazard Mater; 2020 Mar; 386():121904. PubMed ID: 31901712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.
    Nakahashi H; Yamamura Y; Usami A; Rangsunvigit P; Malakul P; Miyazawa M
    Biopharm Drug Dispos; 2015 Dec; 36(9):565-74. PubMed ID: 26126958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka.
    Wan Y; Liu F; Wiseman S; Zhang X; Chang H; Hecker M; Jones PD; Lam MH; Giesy JP
    Environ Sci Technol; 2010 Nov; 44(22):8729-35. PubMed ID: 20973477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro metabolism of hydroxylated polybrominated diphenyl ethers and their inhibitory effects on 17β-estradiol metabolism in rat liver microsomes.
    Lai Y; Cai Z
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3219-27. PubMed ID: 22392690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxylated metabolites of the polybrominated diphenyl ether mixture DE-71 are weak estrogen receptor-alpha ligands.
    Mercado-Feliciano M; Bigsby RM
    Environ Health Perspect; 2008 Oct; 116(10):1315-21. PubMed ID: 18941571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes.
    Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK
    Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bromination of 2-methoxydiphenyl ether to an average of tetrabrominated 2-methoxydiphenyl ethers.
    Vetter W; Kirres J; Bendig P
    Chemosphere; 2011 Aug; 84(8):1117-24. PubMed ID: 21546057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates.
    Erratico CA; Deo AK; Bandiera SM
    Adv Exp Med Biol; 2015; 851():131-49. PubMed ID: 26002734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Debromination of polybrominated diphenyl ether-99 (BDE-99) in carp (Cyprinus carpio) microflora and microsomes.
    Benedict RT; Stapleton HM; Letcher RJ; Mitchelmore CL
    Chemosphere; 2007 Oct; 69(6):987-93. PubMed ID: 17640709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites.
    Avent KM; DeVoss JJ; Gillam EM
    Chem Res Toxicol; 2006 Jul; 19(7):914-20. PubMed ID: 16841959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.