These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23537206)

  • 21. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.
    Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J
    Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.
    Mejac I; Bryan WW; Lee TR; Tran CD
    Anal Chem; 2009 Aug; 81(16):6687-94. PubMed ID: 19618908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model.
    Day ES; Thompson PA; Zhang L; Lewinski NA; Ahmed N; Drezek RA; Blaney SM; West JL
    J Neurooncol; 2011 Aug; 104(1):55-63. PubMed ID: 21110217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near infrared laser-tissue welding using nanoshells as an exogenous absorber.
    Gobin AM; O'Neal DP; Watkins DM; Halas NJ; Drezek RA; West JL
    Lasers Surg Med; 2005 Aug; 37(2):123-9. PubMed ID: 16047329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating.
    Elliott AM; Schwartz J; Wang J; Shetty AM; Bourgoyne C; O'Neal DP; Hazle JD; Stafford RJ
    Med Phys; 2009 Apr; 36(4):1351-8. PubMed ID: 19472642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy-New particles for theranostics.
    Grabowska-Jadach I; Kalinowska D; Drozd M; Pietrzak M
    Biomed Pharmacother; 2019 Mar; 111():1147-1155. PubMed ID: 30841428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.
    Ding H; Lv J; Wu H; Chai G; Liu A
    R Soc Open Sci; 2018 Jan; 5(1):171350. PubMed ID: 29410838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in-vitro investigation of skin tissue soldering using gold nanoshells and diode laser.
    Nourbakhsh MS; Khosroshahi ME
    Lasers Med Sci; 2011 Jan; 26(1):49-55. PubMed ID: 20623244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold nanoshell/polysaccharide nanofilm for controlled laser-assisted tissue thermal ablation.
    Redolfi Riva E; Desii A; Sinibaldi E; Ciofani G; Piazza V; Mazzolai B; Mattoli V
    ACS Nano; 2014 Jun; 8(6):5552-63. PubMed ID: 24797875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection and localization of gold nanoshells inside cells: near-field approximation.
    D'Acunto M; Cricenti A; Danti S; Dinarelli S; Luce M; Moroni D; Salvetti O
    Appl Opt; 2016 Dec; 55(34):D11-D16. PubMed ID: 27958433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying high performance gold nanoshells for singlet oxygen generation enhancement.
    Farooq S; de Araujo RE
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102466. PubMed ID: 34343668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vitro Effects of Hollow Gold Nanoshells on Human Aortic Endothelial Cells.
    Gu C; Wu H; Ge G; Li X; Guo Z; Bian Z; Xu J; Lu H; Chen X; Yang D
    Nanoscale Res Lett; 2016 Dec; 11(1):397. PubMed ID: 27624340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunotargeted nanoshells for integrated cancer imaging and therapy.
    Loo C; Lowery A; Halas N; West J; Drezek R
    Nano Lett; 2005 Apr; 5(4):709-11. PubMed ID: 15826113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser induced SERS switching using plasmonic heating of PNIPAM coated HGNs.
    Kearns H; Shand NC; Faulds K; Graham D
    Chem Commun (Camb); 2015 May; 51(38):8138-41. PubMed ID: 25873474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers.
    Poudel BK; Soe ZC; Ruttala HB; Gupta B; Ramasamy T; Thapa RK; Gautam M; Ou W; Nguyen HT; Jeong JH; Jin SG; Choi HG; Yong CS; Kim JO
    Int J Pharm; 2018 Sep; 548(1):92-103. PubMed ID: 29959089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia.
    Huang CJ; Chu SH; Li CH; Lee TR
    Colloids Surf B Biointerfaces; 2016 Sep; 145():291-300. PubMed ID: 27208443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates.
    Wan D; Chen HL; Tseng SC; Wang LA; Chen YP
    ACS Nano; 2010 Jan; 4(1):165-73. PubMed ID: 19968294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.