These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23537241)

  • 1. Small geographic variation in photoperiodic entrainment of the circannual rhythm in the varied carpet beetle, Anthrenus verbasci.
    Matsuno T; Kawasaki Y; Numata H
    Zoolog Sci; 2013 Apr; 30(4):304-10. PubMed ID: 23537241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A circadian system is involved in photoperiodic entrainment of the circannual rhythm of Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    J Insect Physiol; 2009 May; 55(5):494-8. PubMed ID: 19133269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase responses in the circannual rhythm of the varied carpet beetle, Anthrenus verbasci, under naturally changing day length.
    Miyazaki Y; Nisimura T; Numata H
    Zoolog Sci; 2006 Nov; 23(11):1031-7. PubMed ID: 17189916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phase response curve for circannual rhythm in the varied carpet beetle Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Oct; 191(10):883-7. PubMed ID: 16041605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci.
    Nisimura T; Numata H
    J Comp Physiol A; 2001 Jul; 187(6):433-40. PubMed ID: 11548990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsiveness to photoperiodic changes in the circannual rhythm of the varied carpet beetle, Anthrenus verbasci.
    Miyazaki Y; Numata H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):241-6. PubMed ID: 19093124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circannual rhythm in the varied carpet beetle, Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    Prog Brain Res; 2012; 199():439-456. PubMed ID: 22877680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase resetting and phase singularity of an insect circannual oscillator.
    Miyazaki Y; Nisimura T; Numata H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1169-76. PubMed ID: 17882435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circannual phase response curves to short and long photoperiod in the European hamster.
    Monecke S; Saboureau M; Malan A; Bonn D; Masson-Pévet M; Pévet P
    J Biol Rhythms; 2009 Oct; 24(5):413-26. PubMed ID: 19755586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiod can entrain circannual rhythms in pinealectomized European hamsters.
    Monecke S; Sage-Ciocca D; Wollnik F; Pévet P
    J Biol Rhythms; 2013 Aug; 28(4):278-90. PubMed ID: 23929555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii.
    Shintani Y; Shiga S; Numata H
    J Exp Biol; 2009 Nov; 212(Pt 22):3651-5. PubMed ID: 19880726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative short-day photoperiodic response in larval development and its adaptive significance in an adult-overwintering cerambycid beetle, Phytoecia rufiventris.
    Shintani Y
    J Insect Physiol; 2011 Jul; 57(7):1053-9. PubMed ID: 21616076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoperiodic response of larvae of the yellow-spotted longicorn beetle Psacothea hilaris after removal of the stemmata.
    Shintani Y; Numata H
    J Insect Physiol; 2010 Sep; 56(9):1125-9. PubMed ID: 20230824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circannual basis of geographically distinct bird schedules.
    Helm B; Schwabl I; Gwinner E
    J Exp Biol; 2009 May; 212(Pt 9):1259-69. PubMed ID: 19376946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of photoperiodic control of diapause between aestivation and hibernation in the cabbage butterfly Pieris melete.
    Xiao HJ; Li F; Wei XT; Xue FS
    J Insect Physiol; 2008 May; 54(5):755-64. PubMed ID: 18440018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the life cycle and photoperiodic response between northern and southern populations of the terrestrial slug Lehmannia valentiana in Japan.
    Udaka H; Numata H
    Zoolog Sci; 2010 Sep; 27(9):735-9. PubMed ID: 20822401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.).
    Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC
    Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms are not involved in the regulation of circannual reproductive cycles in a sub-tropical bird, the spotted munia.
    Budki P; Malik S; Rani S; Kumar V
    J Exp Biol; 2014 Jul; 217(Pt 14):2569-79. PubMed ID: 24803462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inheritance of the photoperiodic response controlling imaginal summer diapause in the cabbage beetle, Colaphellus bowringi.
    Kuang XJ; Xu J; Xia QW; He HM; Xue FS
    J Insect Physiol; 2011 May; 57(5):614-9. PubMed ID: 21215751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pupal diapause of Helicoverpa armigera (Lepidoptera: Noctuidae): sensitive stage for thermal induction in the Okayama (western Japan) population.
    Kurban A; Yoshida H; Izumi Y; Sonoda S; Tsumuki H
    Bull Entomol Res; 2007 Jun; 97(3):219-23. PubMed ID: 17524153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.