BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23537347)

  • 1. An effective method for refining predicted protein complexes based on protein activity and the mechanism of protein complex formation.
    Wang J; Peng X; Xiao Q; Li M; Pan Y
    BMC Syst Biol; 2013 Mar; 7():28. PubMed ID: 23537347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X; Liang J
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28737728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of protein complexes using a protein ranking algorithm.
    Zaki N; Berengueres J; Efimov D
    Proteins; 2012 Oct; 80(10):2459-68. PubMed ID: 22685080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.
    Mehranfar A; Ghadiri N; Kouhsar M; Golshani A
    Comput Biol Med; 2017 Sep; 88():18-31. PubMed ID: 28672176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P; Ramyachitra D; Banupriya D
    Gene; 2016 Apr; 580(2):144-158. PubMed ID: 26809099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein complex prediction based on simultaneous protein interaction network.
    Jung SH; Hyun B; Jang WH; Hur HY; Han DS
    Bioinformatics; 2010 Feb; 26(3):385-91. PubMed ID: 19965885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L; Chan KC
    BMC Bioinformatics; 2015 May; 16():174. PubMed ID: 26013799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying protein complexes from interaction networks based on clique percolation and distance restriction.
    Wang J; Liu B; Li M; Pan Y
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S10. PubMed ID: 21047377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the overlapping complexes in protein interaction networks.
    Li M; Wang J; Chen J; Cai Z; Chen G
    Int J Data Min Bioinform; 2010; 4(1):91-108. PubMed ID: 20376924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GIBA: a clustering tool for detecting protein complexes.
    Moschopoulos CN; Pavlopoulos GA; Schneider R; Likothanassis SD; Kossida S
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S11. PubMed ID: 19534736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network.
    Shen X; Yi L; Jiang X; Zhao Y; Hu X; He T; Yang J
    Methods; 2016 Nov; 110():90-96. PubMed ID: 27320204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of low-confidence interactions on computational identification of protein complexes.
    Paul M; Anand A
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050025. PubMed ID: 32757809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of protein sequence and protein-protein interaction data by hypergraph learning to identify novel protein complexes.
    Xia S; Li D; Deng X; Liu Z; Zhu H; Liu Y; Li D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38851299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining Dense Overlapping Subgraphs in weighted protein-protein interaction networks.
    Lee AJ; Lin MC; Hsu CM
    Biosystems; 2011 Mar; 103(3):392-9. PubMed ID: 21095218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPSampler2: predicting protein complexes more accurately and efficiently by sampling.
    Widita CK; Maruyama O
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S14. PubMed ID: 24565288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein complexes predictions within protein interaction networks using genetic algorithms.
    Ramadan E; Naef A; Ahmed M
    BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):269. PubMed ID: 27454228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.