These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48. Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. Sahashi K; Engel AG; Linstrom JM; Lambert EH; Lennon VA J Neuropathol Exp Neurol; 1978; 37(2):212-23. PubMed ID: 147324 [TBL] [Abstract][Full Text] [Related]
49. Receptor clustering and pathogenic complement activation in myasthenia gravis depend on synergy between antibodies with multiple subunit specificities. Rose N; Holdermann S; Callegari I; Kim H; Fruh I; Kappos L; Kuhle J; Müller M; Sanderson NSR; Derfuss T Acta Neuropathol; 2022 Nov; 144(5):1005-1025. PubMed ID: 36074148 [TBL] [Abstract][Full Text] [Related]
50. Mannose-binding lectin pathway is not involved in myasthenia gravis pathogenesis. Li J; Qi H; Tüzün E; Allman W; Yilmaz V; Saini SS; Deymeer F; Saruhan-Direskeneli G; Christadoss P J Neuroimmunol; 2009 Mar; 208(1-2):40-5. PubMed ID: 19193448 [TBL] [Abstract][Full Text] [Related]
51. C5 gene influences the development of murine myasthenia gravis. Christadoss P J Immunol; 1988 Apr; 140(8):2589-92. PubMed ID: 3356901 [TBL] [Abstract][Full Text] [Related]
52. Complement Inhibitor Therapy for Myasthenia Gravis. Albazli K; Kaminski HJ; Howard JF Front Immunol; 2020; 11():917. PubMed ID: 32582144 [TBL] [Abstract][Full Text] [Related]
53. ATRA alters humoral responses associated with amelioration of EAMG symptoms by balancing Tfh/Tfr helper cell profiles. Xie X; Mu L; Yao X; Li N; Sun B; Li Y; Zhan X; Wang X; Kang X; Wang J; Liu Y; Zhang Y; Wang G; Wang D; Liu X; Kong Q; Li H Clin Immunol; 2013 Aug; 148(2):162-76. PubMed ID: 23773919 [TBL] [Abstract][Full Text] [Related]
54. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats Song J; Zhao R; Yan C; Luo S; Xi J; Ding P; Li L; Hu W; Zhao C Front Immunol; 2022; 13():746068. PubMed ID: 35154091 [TBL] [Abstract][Full Text] [Related]
55. Activation of the classical complement pathway in myasthenia gravis with acetylcholine receptor antibodies. Ozawa Y; Uzawa A; Onishi Y; Yasuda M; Kojima Y; Kuwabara S Muscle Nerve; 2023 Nov; 68(5):798-804. PubMed ID: 37705312 [TBL] [Abstract][Full Text] [Related]
56. Complement regulatory protein Crry deficiency contributes to the antigen specific recall response in experimental autoimmune myasthenia gravis. Soltys J; Wu X J Inflamm (Lond); 2012 May; 9(1):20. PubMed ID: 22642809 [TBL] [Abstract][Full Text] [Related]
57. Macrophage infiltration at the neuromuscular junction does not contribute to AChR loss and age-related resistance to EAMG. Hoedemaekers A; Graus Y; Beijleveld L; van Breda Vriesman P; De Baets M J Neuroimmunol; 1997 May; 75(1-2):147-55. PubMed ID: 9143248 [TBL] [Abstract][Full Text] [Related]
58. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Engel AG; Sakakibara H; Sahashi K; Lindstrom JM; Lambert EH; Lennon VA Neurology; 1979 Feb; 29(2):179-88. PubMed ID: 571062 [TBL] [Abstract][Full Text] [Related]
59. Acetylcholine receptor antibody-mediated animal models of myasthenia gravis and the role of complement. Kusner LL; Sengupta M; Kaminski HJ Ann N Y Acad Sci; 2018 Feb; 1413(1):136-142. PubMed ID: 29356015 [TBL] [Abstract][Full Text] [Related]
60. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia. Kaminski HJ; Kusner LL; Richmonds C; Medof ME; Lin F Exp Neurol; 2006 Dec; 202(2):287-93. PubMed ID: 16859686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]