BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23537611)

  • 1. A data mining approach for diagnosis of coronary artery disease.
    Alizadehsani R; Habibi J; Hosseini MJ; Mashayekhi H; Boghrati R; Ghandeharioun A; Bahadorian B; Sani ZA
    Comput Methods Programs Biomed; 2013 Jul; 111(1):52-61. PubMed ID: 23537611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new machine learning technique for an accurate diagnosis of coronary artery disease.
    Abdar M; Książek W; Acharya UR; Tan RS; Makarenkov V; Pławiak P
    Comput Methods Programs Biomed; 2019 Oct; 179():104992. PubMed ID: 31443858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries.
    Alizadehsani R; Hosseini MJ; Khosravi A; Khozeimeh F; Roshanzamir M; Sarrafzadegan N; Nahavandi S
    Comput Methods Programs Biomed; 2018 Aug; 162():119-127. PubMed ID: 29903478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data.
    Verma L; Srivastava S; Negi PC
    J Med Syst; 2016 Jul; 40(7):178. PubMed ID: 27286983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based coronary artery disease diagnosis: A comprehensive review.
    Alizadehsani R; Abdar M; Roshanzamir M; Khosravi A; Kebria PM; Khozeimeh F; Nahavandi S; Sarrafzadegan N; Acharya UR
    Comput Biol Med; 2019 Aug; 111():103346. PubMed ID: 31288140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge discovery in medical systems using differential diagnosis, LAMSTAR & k-NN.
    Isola R; Carvalho R; Tripathy AK
    IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1287-95. PubMed ID: 22929463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting coronary artery disease: a comparison between two data mining algorithms.
    Ayatollahi H; Gholamhosseini L; Salehi M
    BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm.
    Arabasadi Z; Alizadehsani R; Roshanzamir M; Moosaei H; Yarifard AA
    Comput Methods Programs Biomed; 2017 Apr; 141():19-26. PubMed ID: 28241964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of ischaemic episodes with ST/HR diagrams.
    Faganeli Pucer J; Demšar J; Kukar M
    Stud Health Technol Inform; 2012; 180():1108-10. PubMed ID: 22874369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decision tree-based diagnosis of coronary artery disease: CART model.
    Ghiasi MM; Zendehboudi S; Mohsenipour AA
    Comput Methods Programs Biomed; 2020 Aug; 192():105400. PubMed ID: 32179311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting coronary artery disease with medical profile and gene polymorphisms data.
    Chen Q; Li G; Leong TY; Heng CK
    Stud Health Technol Inform; 2007; 129(Pt 2):1219-24. PubMed ID: 17911909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profile-based assessment of diseases affective factors using fuzzy association rule mining approach: A case study in heart diseases.
    Yavari A; Rajabzadeh A; Abdali-Mohammadi F
    J Biomed Inform; 2021 Apr; 116():103695. PubMed ID: 33549658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the risk factors of coronary heart events based on data mining with decision trees.
    Karaolis MA; Moutiris JA; Hadjipanayi D; Pattichis CS
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):559-66. PubMed ID: 20071264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supporting diagnostic decisions using hybrid and complementary data mining applications: a pilot study in the pediatric emergency department.
    Grigull L; Lechner WM
    Pediatr Res; 2012 Jun; 71(6):725-31. PubMed ID: 22441377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct costs and cost-effectiveness of dual-source computed tomography and invasive coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease.
    Dorenkamp M; Bonaventura K; Sohns C; Becker CR; Leber AW
    Heart; 2012 Mar; 98(6):460-7. PubMed ID: 21846767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the feasibility of data mining techniques for early liver cancer detection.
    Kuo MH; Hung CM; Barnett J; Pinheiro F
    Stud Health Technol Inform; 2012; 180():584-8. PubMed ID: 22874258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening for posttraumatic stress disorder using verbal features in self narratives: a text mining approach.
    He Q; Veldkamp BP; de Vries T
    Psychiatry Res; 2012 Aug; 198(3):441-7. PubMed ID: 22464046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of coronary artery disease using an efficient hash table based closed frequent itemsets mining.
    Dhanaseelan R; Jeya Sutha M
    Med Biol Eng Comput; 2018 May; 56(5):749-759. PubMed ID: 28905236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.