BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23537657)

  • 21. Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells.
    Augsburger F; Randi EB; Jendly M; Ascencao K; Dilek N; Szabo C
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32183148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation.
    Ramasamy S; Singh S; Taniere P; Langman MJ; Eggo MC
    Am J Physiol Gastrointest Liver Physiol; 2006 Aug; 291(2):G288-96. PubMed ID: 16500920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Hydrogen Sulfide and 3-Mercaptopyruvate Sulfurtransferase in the Regulation of the Endoplasmic Reticulum Stress Response in Hepatocytes.
    Panagaki T; Randi EB; Szabo C
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33352938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress.
    DU JT; Li W; Yang JY; Tang CS; Li Q; Jin HF
    Chin Med J (Engl); 2013 Mar; 126(5):930-6. PubMed ID: 23489804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria.
    Kimura Y; Goto Y; Kimura H
    Antioxid Redox Signal; 2010 Jan; 12(1):1-13. PubMed ID: 19852698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms.
    Szabo C; Ransy C; Módis K; Andriamihaja M; Murghes B; Coletta C; Olah G; Yanagi K; Bouillaud F
    Br J Pharmacol; 2014 Apr; 171(8):2099-122. PubMed ID: 23991830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of the 3-mercaptopyruvate sulfurtransferase-hydrogen sulfide system promotes cellular lipid accumulation.
    Casili G; Randi E; Panagaki T; Zuhra K; Petrosino M; Szabo C
    Geroscience; 2022 Aug; 44(4):2271-2289. PubMed ID: 35680713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug resistance induces the upregulation of H
    Untereiner AA; Pavlidou A; Druzhyna N; Papapetropoulos A; Hellmich MR; Szabo C
    Biochem Pharmacol; 2018 Mar; 149():174-185. PubMed ID: 29061341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons.
    Miyamoto R; Otsuguro K; Yamaguchi S; Ito S
    J Neurochem; 2014 Jul; 130(1):29-40. PubMed ID: 24611772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H
    Ezeriņa D; Takano Y; Hanaoka K; Urano Y; Dick TP
    Cell Chem Biol; 2018 Apr; 25(4):447-459.e4. PubMed ID: 29429900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches.
    Nagahara N
    Antioxid Redox Signal; 2013 Nov; 19(15):1792-802. PubMed ID: 23146073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen sulfide in cell signaling, signal transduction, cellular bioenergetics and physiology in C. elegans.
    Módis K; Wolanska K; Vozdek R
    Gen Physiol Biophys; 2013 Mar; 32(1):1-22. PubMed ID: 23531831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy?
    Brodek P; Olas B
    Postepy Hig Med Dosw (Online); 2016 Aug; 70(0):820-9. PubMed ID: 27516569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation.
    Eghbal MA; Pennefather PS; O'Brien PJ
    Toxicology; 2004 Oct; 203(1-3):69-76. PubMed ID: 15363583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats.
    Ren YS; Wu SY; Wang XJ; Yu F; Zhao J; Tang CS; Ouyang JP; Geng B
    Chin Med J (Engl); 2011 Nov; 124(21):3468-75. PubMed ID: 22340160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effects of Genetic 3-Mercaptopyruvate Sulfurtransferase Deficiency in Murine Traumatic-Hemorrhagic Shock.
    Gröger M; Wepler M; Wachter U; Merz T; McCook O; Kress S; Lukaschewski B; Hafner S; Huber-Lang M; Calzia E; Georgieff M; Nagahara N; Szabó C; Radermacher P; Hartmann C
    Shock; 2019 Apr; 51(4):472-478. PubMed ID: 29668565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis.
    Nagahara N; Okazaki T; Nishino T
    J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen sulfide and the liver.
    Mani S; Cao W; Wu L; Wang R
    Nitric Oxide; 2014 Sep; 41():62-71. PubMed ID: 24582857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. H2S: a universal defense against antibiotics in bacteria.
    Shatalin K; Shatalina E; Mironov A; Nudler E
    Science; 2011 Nov; 334(6058):986-90. PubMed ID: 22096201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.