BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23537955)

  • 21. Proteomics analyses revealed the reduction of carbon- and nitrogen-metabolism and ginsenoside biosynthesis in the red-skin disorder of Panax ginseng.
    Ma R; Jiang R; Chen X; Zhao D; Li T; Sun L
    Funct Plant Biol; 2019 Nov; 46(12):1123-1133. PubMed ID: 31581976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].
    Huang T; Gao W; Wang J; Cao Y
    Zhongguo Zhong Yao Za Zhi; 2010 Jan; 35(1):13-7. PubMed ID: 20349707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CO(2)-induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: role of antioxidants and enzymes.
    Ali MB; Hahn EJ; Paek KY
    Plant Physiol Biochem; 2005 May; 43(5):449-57. PubMed ID: 15878284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quality evaluation of Panax ginseng adventitious roots based on ginsenoside constituents, functional genes, and ferric-reducing antioxidant power.
    Liang W; Wang S; Yao L; Wang J; Gao W
    J Food Biochem; 2019 Aug; 43(8):e12901. PubMed ID: 31368571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone.
    Mathesius U; Djordjevic MA; Oakes M; Goffard N; Haerizadeh F; Weiller GF; Singh MB; Bhalla PL
    Proteomics; 2011 May; 11(9):1707-19. PubMed ID: 21438152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced ginsenoside productivity by combination of ethephon and methyl jasmoante in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures.
    Bae KH; Choi YE; Shin CG; Kim YY; Kim YS
    Biotechnol Lett; 2006 Aug; 28(15):1163-6. PubMed ID: 16799761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemistry of ginseng root tissues affected by rusty root symptoms.
    Rahman M; Punja ZK
    Plant Physiol Biochem; 2005 Dec; 43(12):1103-14. PubMed ID: 16386432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures.
    Wang Y; Shen Y; Shen Z; Zhao L; Ning D; Jiang C; Zhao R; Huang L
    Plant Physiol Biochem; 2016 Oct; 107():364-373. PubMed ID: 27372730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Cultivation of Panax ginseng adventitious roots in bubble bioreactors].
    Zuo BM; Gao WY; Wang J; Yin SS; Liu H; Zhang LM
    Zhongguo Zhong Yao Za Zhi; 2012 Dec; 37(24):3706-11. PubMed ID: 23627164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq.
    Wu B; Long Q; Gao Y; Wang Z; Shao T; Liu Y; Li Y; Ding W
    BMC Genomics; 2015 Nov; 16():1010. PubMed ID: 26608743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ginsenoside production in different phenotypes of Panax ginseng transformed roots.
    Mallol A; Cusidó RM; Palazón J; Bonfill M; Morales C; Piñol MT
    Phytochemistry; 2001 Jun; 57(3):365-71. PubMed ID: 11393515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis.
    Sharmin SA; Alam I; Kim KH; Kim YG; Kim PJ; Bahk JD; Lee BH
    Plant Sci; 2012 May; 187():113-26. PubMed ID: 22404839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors.
    Ali MB; Yu KW; Hahn EJ; Paek KY
    Plant Cell Rep; 2006 Jun; 25(6):613-20. PubMed ID: 16463159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.
    Zhang H; Ni Z; Chen Q; Guo Z; Gao W; Su X; Qu Y
    Mol Genet Genomics; 2016 Jun; 291(3):1293-303. PubMed ID: 26941218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency.
    Geilfus CM; Carpentier SC; Zavišić A; Polle A
    J Proteomics; 2017 Oct; 169():33-40. PubMed ID: 28625739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of temperature on morphology, ginsenosides biosynthesis, functional genes, and transcriptional factors expression in Panax ginseng adventitious roots.
    Wang S; Liang W; Yao L; Wang J; Gao W
    J Food Biochem; 2019 Apr; 43(4):e12794. PubMed ID: 31353579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of ginsenoside Rg(1) in Panax ginseng hairy root by overexpressing the α-L-rhamnosidase gene from Bifidobacterium breve.
    Zhang R; Zhang BL; Li GC; Xie T; Hu T; Luo ZY
    Biotechnol Lett; 2015 Oct; 37(10):2091-6. PubMed ID: 26087948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress.
    Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH
    Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer.
    Yin R; Zhao M; Wang K; Lin Y; Wang Y; Sun C; Wang Y; Zhang M
    PLoS One; 2017; 12(7):e0181596. PubMed ID: 28727829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.