These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 23538436)

  • 21. [Results of corneal and total astigmatism estimation by different methods in myopic patients wearing orthokeratology contact lenses].
    Tarutta EP; Aliaeva OO; Verzhanskaia TIu; Milash SV
    Vestn Oftalmol; 2013; 129(4):59-64. PubMed ID: 24137984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology.
    Hiraoka T; Okamoto C; Ishii Y; Kakita T; Oshika T
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):550-6. PubMed ID: 17251449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effectiveness and safety of overnight orthokeratology with Boston XO2 high-permeability lens material: A 24 week follow-up study.
    Cheng HC; Liang JB; Lin WP; Wu R
    Cont Lens Anterior Eye; 2016 Feb; 39(1):67-71. PubMed ID: 26350271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilization in early adult-onset myopia with corneal refractive therapy.
    González-Méijome JM; Carracedo G; Lopes-Ferreira D; Faria-Ribeiro MA; Peixoto-de-Matos SC; Queirós A
    Cont Lens Anterior Eye; 2016 Feb; 39(1):72-7. PubMed ID: 26189097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of corneal irregular astigmatism, ocular higher-order aberrations, and contrast sensitivity after discontinuation of overnight orthokeratology.
    Hiraoka T; Okamoto C; Ishii Y; Okamoto F; Oshika T
    Br J Ophthalmol; 2009 Feb; 93(2):203-8. PubMed ID: 19019936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology.
    Tsukiyama J; Miyamoto Y; Higaki S; Fukuda M; Shimomura Y
    Eye Contact Lens; 2008 Jan; 34(1):17-20. PubMed ID: 18180677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A study on the effect of the corneal biomechanical properties undergoing overnight orthokeratology].
    Mao XJ; Huang CC; Chen L; Lü F
    Zhonghua Yan Ke Za Zhi; 2010 Mar; 46(3):209-13. PubMed ID: 20450664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical quality of the cornea after overnight orthokeratology.
    Hiraoka T; Okamoto F; Kaji Y; Oshika T
    Cornea; 2006 Dec; 25(10 Suppl 1):S59-63. PubMed ID: 17001195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of Short-Term Orthokeratology to Corneal Tangent Modulus: A Randomized Study.
    Lam AK; Leung SY; Hon Y; Shu-Ho L; Wong KY; Tiu PK; Lam DC
    Curr Eye Res; 2018 Apr; 43(4):474-481. PubMed ID: 29283679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posterior corneal curvature change and recovery after 6 months of overnight orthokeratology treatment.
    Chen D; Lam AK; Cho P
    Ophthalmic Physiol Opt; 2010 May; 30(3):274-80. PubMed ID: 20444134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term follow-up of orthokeratology corneal reshaping using wavefront aberrometry and contrast sensitivity.
    Stillitano I; Schor P; Lipener C; Hofling-Lima AL
    Eye Contact Lens; 2008 May; 34(3):140-5. PubMed ID: 18463478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Correlation between the increase in corneal higher-order aberrations and the control of children's myopic anisometropia after wearing orthokeratology lenses].
    Sun XX; Zhang Y; Chen YG
    Zhonghua Yan Ke Za Zhi; 2022 Apr; 58(4):250-258. PubMed ID: 35391511
    [No Abstract]   [Full Text] [Related]  

  • 33. The influence of orthokeratology compression factor on ocular higher-order aberrations.
    Lau JK; Vincent SJ; Cheung SW; Cho P
    Clin Exp Optom; 2020 Jan; 103(1):123-128. PubMed ID: 31264269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central and paracentral corneal curvature changes during orthokeratology.
    Maseedupally V; Gifford P; Lum E; Swarbrick H
    Optom Vis Sci; 2013 Nov; 90(11):1249-58. PubMed ID: 24037062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corneal refractive therapy with different lens materials, part 2: effect of oxygen transmissibility on corneal shape and optical characteristics.
    Lu F; Simpson T; Sorbara L; Fonn D
    Optom Vis Sci; 2007 Apr; 84(4):349-56. PubMed ID: 17435519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship between the treatment zone diameter and visual, optical and subjective performance in Corneal Refractive Therapy lens wearers.
    Lu F; Simpson T; Sorbara L; Fonn D
    Ophthalmic Physiol Opt; 2007 Nov; 27(6):568-78. PubMed ID: 17956362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of orthokeratology on peripheral aberrations of the eye.
    Mathur A; Atchison DA
    Optom Vis Sci; 2009 May; 86(5):E476-84. PubMed ID: 19342979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5060-5. PubMed ID: 22729437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overnight orthokeratology: visual and corneal changes.
    Soni PS; Nguyen TT; Bonanno JA
    Eye Contact Lens; 2003 Jul; 29(3):137-45. PubMed ID: 12861107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epithelial, stromal, and corneal pachymetry changes during orthokeratology.
    Reinstein DZ; Gobbe M; Archer TJ; Couch D; Bloom B
    Optom Vis Sci; 2009 Aug; 86(8):E1006-14. PubMed ID: 19584769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.