These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23538506)

  • 1. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
    Lin Y; Rivera D; Chen KP
    Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.
    Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M
    Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of photonic crystals for the visible spectrum by holographic lithography.
    Campbell M; Sharp DN; Harrison MT; Denning RG; Turberfield AJ
    Nature; 2000 Mar; 404(6773):53-6. PubMed ID: 10716437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dip-in depletion optical lithography of three-dimensional chiral polarizers.
    Thiel M; Ott J; Radke A; Kaschke J; Wegener M
    Opt Lett; 2013 Oct; 38(20):4252-5. PubMed ID: 24321972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization.
    Serbin J; Gu M
    Opt Express; 2006 Apr; 14(8):3563-8. PubMed ID: 19516503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and fabrication of woodpile photonic structures through phase SLM-based interference lithography for omnidirectional optical filters.
    Behera S; Joseph J
    Opt Lett; 2017 Jul; 42(13):2607-2610. PubMed ID: 28957296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment.
    Li J; Jia B; Gu M
    Opt Express; 2008 Nov; 16(24):20073-80. PubMed ID: 19030093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional woodpile photonic crystal templates for the infrared spectral range.
    Mizeikis V; Seet KK; Juodkazis S; Misawa H
    Opt Lett; 2004 Sep; 29(17):2061-3. PubMed ID: 15455780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.
    Liu H; Yao J; Xu D; Wang P
    Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for single-shot fabrication of chiral woodpile photonic structures using phase-controlled interference lithography.
    Sarkar S; Samanta K; Joseph J
    Opt Express; 2020 Feb; 28(3):4347-4361. PubMed ID: 32122089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping.
    Wang B; Chen KP; Leu PW
    Nanotechnology; 2016 Jun; 27(22):225404. PubMed ID: 27109121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.
    Ibbotson LA; Demetriadou A; Croxall S; Hess O; Baumberg JJ
    Sci Rep; 2015 Feb; 5():8313. PubMed ID: 25660667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal woodpile structure: three-dimensional photonic crystal with a dual periodicity.
    Yan Q; Zhao XS; Teng JH; Chua SJ
    Langmuir; 2006 Aug; 22(16):7001-6. PubMed ID: 16863251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of three-dimensional woodpile photonic crystals composed of circular cylinders with planar defect structures.
    Chung SH; Yang JY
    Appl Opt; 2011 Dec; 50(36):6657-66. PubMed ID: 22193196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.