BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23539198)

  • 1. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae.
    Ding MZ; Wang X; Yang Y; Yuan YJ
    OMICS; 2011 Oct; 15(10):647-53. PubMed ID: 21978393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.
    Harner NK; Bajwa PK; Habash MB; Trevors JT; Austin GD; Lee H
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):29-43. PubMed ID: 24122119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass.
    Almario MP; Reyes LH; Kao KC
    Biotechnol Bioeng; 2013 Oct; 110(10):2616-23. PubMed ID: 23613173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):27-36. PubMed ID: 17028874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol.
    Wang X; Li BZ; Ding MZ; Zhang WW; Yuan YJ
    OMICS; 2013 Mar; 17(3):150-9. PubMed ID: 23421908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.
    Nguyen TTM; Ishida Y; Kato S; Iwaki A; Izawa S
    Yeast; 2018 Jul; 35(7):465-475. PubMed ID: 29575020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling.
    Bajwa PK; Pinel D; Martin VJ; Trevors JT; Lee H
    J Microbiol Methods; 2010 May; 81(2):179-86. PubMed ID: 20298725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.