BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23539502)

  • 41. Relaxant effect of all-trans-retinoic acid via NO-sGC-cGMP pathway and calcium-activated potassium channels in rat mesenteric artery.
    Wang Y; Han Y; Yang J; Wang Z; Liu L; Wang W; Zhou L; Wang D; Tan X; Fu C; Jose PA; Zeng C
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(1):H51-7. PubMed ID: 23125214
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chronic nitric oxide synthase inhibition blunts endothelium-dependent function of conduit coronary arteries, not arterioles.
    Ingram DG; Newcomer SC; Price EM; Eklund KE; McAllister RM; Laughlin MH
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2798-808. PubMed ID: 17259441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tetrahydrobiopterin, a cofactor for nitric oxide synthase, produces endothelium-dependent dilation of mouse pial arterioles.
    Rosenblum WI
    Stroke; 1997 Jan; 28(1):186-9. PubMed ID: 8996510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitric oxide promotes arteriolar dilation during cortical spreading depression in rabbits.
    Colonna DM; Meng W; Deal DD; Busija DW
    Stroke; 1994 Dec; 25(12):2463-70. PubMed ID: 7526490
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shear stress-induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release.
    Dube S; Canty JM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2581-90. PubMed ID: 11356613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels.
    Miura H; Liu Y; Gutterman DD
    Circulation; 1999 Jun; 99(24):3132-8. PubMed ID: 10377076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fenofibrate, an anti-dyslipidemia drug, elicits the dilation of isolated porcine retinal arterioles: role of nitric oxide and AMP-activated protein kinase.
    Omae T; Nagaoka T; Tanano I; Kamiya T; Yoshida A
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2880-6. PubMed ID: 22427586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+-K+-ATPase.
    Qamirani E; Razavi HM; Wu X; Davis MJ; Kuo L; Hein TW
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1617-23. PubMed ID: 16327018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Apelin Reduces Nitric Oxide-Induced Relaxation of Cerebral Arteries by Inhibiting Activation of Large-Conductance, Calcium-Activated K Channels.
    Mughal A; Sun C; OʼRourke ST
    J Cardiovasc Pharmacol; 2018 Apr; 71(4):223-232. PubMed ID: 29620606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dilation of porcine retinal arterioles to nobiletin, a polymethoxyflavonoid: Roles of nitric oxide and voltage-dependent potassium channel.
    Watanabe M; Miyata Y; Ohno A; Yokota H; Takase K; Hanaguri J; Kushiyama A; Yamagami S; Harino S; Nagaoka T
    Exp Eye Res; 2023 Aug; 233():109548. PubMed ID: 37348671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
    Wang Q; Bryan RM; Pelligrino DA
    Brain Res; 1998 May; 793(1-2):187-96. PubMed ID: 9630623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endothelial mechanisms underlying responses to acetylcholine in the horse deep dorsal penile vein.
    Martínez AC; Prieto D; Hernández M; Rivera L; Recio P; García-Sacristán A; Benedito S
    Eur J Pharmacol; 2005 May; 515(1-3):150-9. PubMed ID: 15894308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. KATP channels mediate adenosine-induced hyperemia in retina.
    Gidday JM; Maceren RG; Shah AR; Meier JA; Zhu Y
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2624-33. PubMed ID: 8977476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endothelial NO and prostanoid involvement in newborn and juvenile pig pial arteriolar vasomotor responses.
    Willis AP; Leffler CW
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2366-77. PubMed ID: 11709401
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Divergent roles of nitric oxide and rho kinase in vasomotor regulation of human retinal arterioles.
    Hein TW; Rosa RH; Yuan Z; Roberts E; Kuo L
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1583-90. PubMed ID: 19850828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME).
    Murphy TV; Kotecha N; Hill MA
    Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nicorandil protects pial arterioles from endothelial dysfunction induced by smoking in rats.
    Iwata K; Iida H; Iida M; Takenaka M; Tanabe K; Fukuoka N; Uchida M
    J Neurosurg Anesthesiol; 2013 Oct; 25(4):392-8. PubMed ID: 23660509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae.
    Howitt L; Grayson TH; Morris MJ; Sandow SL; Murphy TV
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(12):H2464-76. PubMed ID: 22492718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of adenosine A2A and A2B receptors and heme oxygenase to AMPA-induced dilation of pial arterioles in rats.
    Ohata H; Cao S; Koehler RC
    Am J Physiol Regul Integr Comp Physiol; 2006 Sep; 291(3):R728-35. PubMed ID: 16601261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.