These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23539587)

  • 1. Chemistry. FRETting over the spectroscopic ruler.
    Winkler JR
    Science; 2013 Mar; 339(6127):1530-1. PubMed ID: 23539587
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantum chemical calculations of tryptophan → heme electron and excitation energy transfer rates in myoglobin.
    Suess CJ; Hirst JD; Besley NA
    J Comput Chem; 2017 Jun; 38(17):1495-1502. PubMed ID: 28369976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.
    Consani C; Auböck G; van Mourik F; Chergui M
    Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of disordered hemes on energy transfer rates between tryptophans and heme in myoglobin.
    Gryczynski Z; Fronticelli C; Tenenholz T; Bucci E
    Biophys J; 1993 Nov; 65(5):1951-8. PubMed ID: 8298024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan-to-heme electron transfer in ferrous myoglobins.
    Monni R; Al Haddad A; van Mourik F; Auböck G; Chergui M
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5602-6. PubMed ID: 25902517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin.
    Stevens JA; Link JJ; Zang C; Wang L; Zhong D
    J Phys Chem A; 2012 Mar; 116(11):2610-9. PubMed ID: 21863851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy.
    Sato A; Mizutani Y
    Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The LOUVRE Laboratory: State-of-the-Art Ultrafast Ultraviolet Spectroscopies for Molecular and Materials Science.
    Oppermann M; Nagornova NS; Oriana A; Baldini E; Mewes L; Bauer B; Palmieri T; Rossi T; van Mourik F; Chergui M
    Chimia (Aarau); 2017 May; 71(5):288-294. PubMed ID: 28576155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual ligand discrimination by a myoglobin reconstituted with a hydrophobic domain-linked heme.
    Sato H; Watanabe M; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2005 Jan; 127(1):56-7. PubMed ID: 15631446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast dynamics of resonance energy transfer in myoglobin: probing local conformation fluctuations.
    Stevens JA; Link JJ; Kao YT; Zang C; Wang L; Zhong D
    J Phys Chem B; 2010 Jan; 114(3):1498-505. PubMed ID: 20047308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the anomalous heme pocket of rainbow trout myoglobin.
    Howes BD; Helbo S; Fago A; Smulevich G
    J Inorg Biochem; 2012 Apr; 109():1-8. PubMed ID: 22366232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assignment of the heme axial ligand(s) for the ferric myoglobin (H93G) and heme oxygenase (H25A) cavity mutants as oxygen donors using magnetic circular dichroism.
    Pond AE; Roach MP; Sono M; Rux AH; Franzen S; Hu R; Thomas MR; Wilks A; Dou Y; Ikeda-Saito M; Ortiz de Montellano PR; Woodruff WH; Boxer SG; Dawson JH
    Biochemistry; 1999 Jun; 38(23):7601-8. PubMed ID: 10360958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studies.
    Dartigalongue T; Niezborala C; Hache F
    Phys Chem Chem Phys; 2007 Apr; 9(13):1611-5. PubMed ID: 17429554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes.
    Atkin AJ; Lynam JM; Moulton BE; Sawle P; Motterlini R; Boyle NM; Pryce MT; Fairlamb IJ
    Dalton Trans; 2011 Jun; 40(21):5755-61. PubMed ID: 21523300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional evaluation of heme vinyl groups in myoglobin with symmetric protoheme isomers.
    Mie Y; Yamada C; Hareau GP; Neya S; Uno T; Funasaki N; Nishiyama K; Taniguchi I
    Biochemistry; 2004 Oct; 43(41):13149-55. PubMed ID: 15476408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational insight into nitration of human myoglobin.
    Lin YW; Shu XG; Du KJ; Nie CM; Wen GB
    Comput Biol Chem; 2014 Oct; 52():60-5. PubMed ID: 25260184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel tyrosine-heme C−O covalent linkage in F43Y myoglobin: a new post-translational modification of heme proteins.
    Yan DJ; Li W; Xiang Y; Wen GB; Lin YW; Tan X
    Chembiochem; 2015 Jan; 16(1):47-50. PubMed ID: 25392956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical determination of heme-linked pKa values and the importance of using fluoride binding in heme proteins.
    Cerda JF; Roeder MH; Houchins DN; Guzman CX; Amendola EJ; Castorino JD; Fritz AL
    Anal Biochem; 2013 Dec; 443(1):75-7. PubMed ID: 23978331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between oxygen affinity and autoxidation of myoglobin.
    Shibata T; Matsumoto D; Nishimura R; Tai H; Matsuoka A; Nagao S; Matsuo T; Hirota S; Imai K; Neya S; Suzuki A; Yamamoto Y
    Inorg Chem; 2012 Nov; 51(21):11955-60. PubMed ID: 23082875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.