BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23539622)

  • 1. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa.
    Ringel P; Krausze J; van den Heuvel J; Curth U; Pierik AJ; Herzog S; Mendel RR; Kruse T
    J Biol Chem; 2013 May; 288(20):14657-14671. PubMed ID: 23539622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum cofactor biosynthesis in Neurospora crassa: biochemical characterization of pleiotropic molybdoenzyme mutants nit-7, nit-8, nit-9A, B and C.
    Heck IS; Ninnemann H
    Photochem Photobiol; 1995 Jan; 61(1):54-60. PubMed ID: 7899494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii.
    Aguilar MR; Cárdenas J; Fernández E
    Biochim Biophys Acta; 1991 Apr; 1073(3):463-9. PubMed ID: 1826614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.
    Kalimuthu P; Ringel P; Kruse T; Bernhardt PV
    Biochim Biophys Acta; 2016 Sep; 1857(9):1506-1513. PubMed ID: 27060250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana.
    Kruse T; Gehl C; Geisler M; Lehrke M; Ringel P; Hallier S; Hänsch R; Mendel RR
    J Biol Chem; 2010 Feb; 285(9):6623-35. PubMed ID: 20040598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase.
    Lambeck I; Chi JC; Krizowski S; Mueller S; Mehlmer N; Teige M; Fischer K; Schwarz G
    Biochemistry; 2010 Sep; 49(37):8177-86. PubMed ID: 20690630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase.
    Meyer C; Gonneau M; Caboche M; Rouzé P
    FEBS Lett; 1995 Aug; 370(3):197-202. PubMed ID: 7656976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana.
    LaBrie ST; Wilkinson JQ; Tsay YF; Feldmann KA; Crawford NM
    Mol Gen Genet; 1992 May; 233(1-2):169-76. PubMed ID: 1534867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis.
    Probst C; Ringel P; Boysen V; Wirsing L; Alexander MM; Mendel RR; Kruse T
    Fungal Genet Biol; 2014 May; 66():69-78. PubMed ID: 24569084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biology of the molybdenum cofactor.
    Mendel RR
    J Exp Bot; 2007; 58(9):2289-96. PubMed ID: 17351249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC.
    Tejada-Jimenez M; Chamizo-Ampudia A; Calatrava V; Galvan A; Fernandez E; Llamas A
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of nitrate reductase activity of the Neurospora crassa mutant nit-1: specific incorporation of molybdopterin.
    Kramer S; Hageman RV; Rajagopalan KV
    Arch Biochem Biophys; 1984 Sep; 233(2):821-9. PubMed ID: 6237611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.
    Blasco F; Dos Santos JP; Magalon A; Frixon C; Guigliarelli B; Santini CL; Giordano G
    Mol Microbiol; 1998 May; 28(3):435-47. PubMed ID: 9632249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form.
    Witte CP; Igeño MI; Mendel R; Schwarz G; Fernández E
    FEBS Lett; 1998 Jul; 431(2):205-9. PubMed ID: 9708903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.
    Sandu C; Brandsch R
    Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae.
    Truong HN; Meyer C; Daniel-Vedele F
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):393-7. PubMed ID: 1898332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminopyrazine Pathway to the Moco Metabolite Dephospho Form A.
    Klewe A; Kruse T; Lindel T
    Chemistry; 2017 Aug; 23(47):11230-11233. PubMed ID: 28688127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional principle of eukaryotic molybdenum insertases.
    Krausze J; Hercher TW; Zwerschke D; Kirk ML; Blankenfeldt W; Mendel RR; Kruse T
    Biochem J; 2018 May; 475(10):1739-1753. PubMed ID: 29717023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.