These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23539622)

  • 1. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa.
    Ringel P; Krausze J; van den Heuvel J; Curth U; Pierik AJ; Herzog S; Mendel RR; Kruse T
    J Biol Chem; 2013 May; 288(20):14657-14671. PubMed ID: 23539622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum cofactor biosynthesis in Neurospora crassa: biochemical characterization of pleiotropic molybdoenzyme mutants nit-7, nit-8, nit-9A, B and C.
    Heck IS; Ninnemann H
    Photochem Photobiol; 1995 Jan; 61(1):54-60. PubMed ID: 7899494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii.
    Aguilar MR; Cárdenas J; Fernández E
    Biochim Biophys Acta; 1991 Apr; 1073(3):463-9. PubMed ID: 1826614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.
    Kalimuthu P; Ringel P; Kruse T; Bernhardt PV
    Biochim Biophys Acta; 2016 Sep; 1857(9):1506-1513. PubMed ID: 27060250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana.
    Kruse T; Gehl C; Geisler M; Lehrke M; Ringel P; Hallier S; Hänsch R; Mendel RR
    J Biol Chem; 2010 Feb; 285(9):6623-35. PubMed ID: 20040598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase.
    Lambeck I; Chi JC; Krizowski S; Mueller S; Mehlmer N; Teige M; Fischer K; Schwarz G
    Biochemistry; 2010 Sep; 49(37):8177-86. PubMed ID: 20690630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase.
    Meyer C; Gonneau M; Caboche M; Rouzé P
    FEBS Lett; 1995 Aug; 370(3):197-202. PubMed ID: 7656976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana.
    LaBrie ST; Wilkinson JQ; Tsay YF; Feldmann KA; Crawford NM
    Mol Gen Genet; 1992 May; 233(1-2):169-76. PubMed ID: 1534867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis.
    Probst C; Ringel P; Boysen V; Wirsing L; Alexander MM; Mendel RR; Kruse T
    Fungal Genet Biol; 2014 May; 66():69-78. PubMed ID: 24569084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biology of the molybdenum cofactor.
    Mendel RR
    J Exp Bot; 2007; 58(9):2289-96. PubMed ID: 17351249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC.
    Tejada-Jimenez M; Chamizo-Ampudia A; Calatrava V; Galvan A; Fernandez E; Llamas A
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of nitrate reductase activity of the Neurospora crassa mutant nit-1: specific incorporation of molybdopterin.
    Kramer S; Hageman RV; Rajagopalan KV
    Arch Biochem Biophys; 1984 Sep; 233(2):821-9. PubMed ID: 6237611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.
    Blasco F; Dos Santos JP; Magalon A; Frixon C; Guigliarelli B; Santini CL; Giordano G
    Mol Microbiol; 1998 May; 28(3):435-47. PubMed ID: 9632249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form.
    Witte CP; Igeño MI; Mendel R; Schwarz G; Fernández E
    FEBS Lett; 1998 Jul; 431(2):205-9. PubMed ID: 9708903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.
    Sandu C; Brandsch R
    Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae.
    Truong HN; Meyer C; Daniel-Vedele F
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):393-7. PubMed ID: 1898332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminopyrazine Pathway to the Moco Metabolite Dephospho Form A.
    Klewe A; Kruse T; Lindel T
    Chemistry; 2017 Aug; 23(47):11230-11233. PubMed ID: 28688127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional principle of eukaryotic molybdenum insertases.
    Krausze J; Hercher TW; Zwerschke D; Kirk ML; Blankenfeldt W; Mendel RR; Kruse T
    Biochem J; 2018 May; 475(10):1739-1753. PubMed ID: 29717023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.