These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 23540271)
1. Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms. Kadasi LM; Dent WC; Malek AM J Neurosurg; 2013 Jul; 119(1):172-9. PubMed ID: 23540271 [TBL] [Abstract][Full Text] [Related]
2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244 [TBL] [Abstract][Full Text] [Related]
3. Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall. Jiang P; Liu Q; Wu J; Chen X; Li M; Li Z; Yang S; Guo R; Gao B; Cao Y; Wang R; Wang S J Clin Neurosci; 2019 Sep; 67():185-190. PubMed ID: 31253387 [TBL] [Abstract][Full Text] [Related]
4. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms. Chien A; Tateshima S; Sayre J; Castro M; Cebral J; Viñuela F Surg Neurol; 2009 Nov; 72(5):444-50; discussion 450. PubMed ID: 19329152 [TBL] [Abstract][Full Text] [Related]
5. Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. Kawaguchi T; Nishimura S; Kanamori M; Takazawa H; Omodaka S; Sato K; Maeda N; Yokoyama Y; Midorikawa H; Sasaki T; Nishijima M J Neurosurg; 2012 Oct; 117(4):774-80. PubMed ID: 22920960 [TBL] [Abstract][Full Text] [Related]
6. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347 [TBL] [Abstract][Full Text] [Related]
7. Newly Identified Hemodynamic Parameter to Predict Thin-Walled Regions of Unruptured Cerebral Aneurysms Using Computational Fluid Dynamics Analysis. Kimura H; Osaki S; Hayashi K; Taniguchi M; Fujita Y; Seta T; Tomiyama A; Sasayama T; Kohmura E World Neurosurg; 2021 Aug; 152():e377-e386. PubMed ID: 34087458 [TBL] [Abstract][Full Text] [Related]
8. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients. Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533 [TBL] [Abstract][Full Text] [Related]
9. Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: a computational fluid modeling study. Qiu T; Jin G; Xing H; Lu H Neurol Sci; 2017 Jun; 38(6):1009-1018. PubMed ID: 28285454 [TBL] [Abstract][Full Text] [Related]
10. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. Sugiyama S; Meng H; Funamoto K; Inoue T; Fujimura M; Nakayama T; Omodaka S; Shimizu H; Takahashi A; Tominaga T World Neurosurg; 2012 Nov; 78(5):462-8. PubMed ID: 22120259 [TBL] [Abstract][Full Text] [Related]
11. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117 [TBL] [Abstract][Full Text] [Related]
12. Hemodynamics and bleb formation in intracranial aneurysms. Cebral JR; Sheridan M; Putman CM AJNR Am J Neuroradiol; 2010 Feb; 31(2):304-10. PubMed ID: 19797790 [TBL] [Abstract][Full Text] [Related]
13. Hemodynamic findings associated with intraoperative appearances of intracranial aneurysms. Jiang P; Liu Q; Wu J; Chen X; Li M; Yang F; Li Z; Yang S; Guo R; Gao B; Cao Y; Wang R; Di F; Wang S Neurosurg Rev; 2020 Feb; 43(1):203-209. PubMed ID: 30242546 [TBL] [Abstract][Full Text] [Related]
14. The role of wall shear stress in the parent artery as an independent variable in the formation status of anterior communicating artery aneurysms. Zhang X; Yao ZQ; Karuna T; He XY; Wang XM; Li XF; Liu WC; Li R; Guo SQ; Chen YC; Li GC; Duan CZ Eur Radiol; 2019 Feb; 29(2):689-698. PubMed ID: 30019140 [TBL] [Abstract][Full Text] [Related]
15. Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation. Zhang Y; Yang X; Wang Y; Liu J; Li C; Jing L; Wang S; Li H BMC Neurol; 2014 Dec; 14():253. PubMed ID: 25551809 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamic Features of Microsurgically Identified, Thin-Walled Regions of Unruptured Middle Cerebral Artery Aneurysms Characterized Using Computational Fluid Dynamics. Kim JH; Han H; Moon YJ; Suh S; Kwon TH; Kim JH; Chong K; Yoon WK Neurosurgery; 2020 Jun; 86(6):851-859. PubMed ID: 31435649 [TBL] [Abstract][Full Text] [Related]
18. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø; Valen-Sendstad K; Mardal KA J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744 [TBL] [Abstract][Full Text] [Related]
19. The contribution of wall shear stress insult to the growth of small unruptured cerebral aneurysms in longitudinal 3D-TOF-MRA. Sun L; Wang J; Li M; Li M; Zhu Y J Neurol Sci; 2020 Jun; 413():116798. PubMed ID: 32251870 [TBL] [Abstract][Full Text] [Related]
20. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate. Lauric A; Hippelheuser JE; Malek AM J Neurosurg; 2019 Aug; 131(2):442-452. PubMed ID: 30095336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]